(adsbygoogle = window.adsbygoogle || []).push({}); Problem:

A disk rotates about its central axis starting from rest and accelerates with constant angular acceleration. At one time it is rotating at 12 rev/s; 69 revolutions later, its angular speed is 33 rev/s. Calculate (a) the angular acceleration, (b) the time required to complete the 69 revolutions, (c) the time required to reach the 12 rev/s angular speed, and (d) the number of revolutions from rest until the time the disk reaches 12 rev/s angular speed.

My work:

[tex]part (a):

\omega ^{2} = \omega ^{2}_{0} + 2 \alpha (\vartheta - \vartheta _{0}) \Rightarrow \frac{2 * \pi * (33^{2} rev/s - 12^{2} rev/s)}{2 * 69 sec} = 43.03 rad/s^{2}[/tex]

[tex]part (b):

\vartheta =\vartheta \frac{1}{2} (\omega _{0} + \omega)* t \Rightarrow \frac{2 * 69 sec}{12 rev/s + 33 rev/s} = 3.07 sec[/tex]

[tex]part (c):

\omega ^{2} = \omega ^{2}_{0} + 2 \alpha (\vartheta - \vartheta _{0}) \Rightarrow \frac{(33^{2} rev/s - 12^{2} rev/s)}{2 * 69 sec} = 6.85 rev/s^{2};[/tex]

[tex]\omega = \omega _{0} + \alpha * t \Rightarrow \frac{12 rev/s}{6.85 rev/s^{2}} = 1.75 sec[/tex]

[tex]part (d):

\omega ^{2} = \omega ^{2}_{0} + 2 \alpha (\vartheta - \vartheta _{0}) \Rightarrow \frac{(12^{2} rev/s - 0^{2} rev/s)}{2 * 6.85 rev/s^{2}} = 10.5 rev[/tex]

I think I did it correctly, but I would appreciate if I could have my work checked since it's the first time I've done angular acceleration. Thank you.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Rotation of a disk - find angular acceleration

**Physics Forums | Science Articles, Homework Help, Discussion**