Rotation of macroscopic magnetization = average (Magnetization current density)

Click For Summary
SUMMARY

The discussion centers on the relationship between macroscopic magnetization and magnetization current density, specifically stating that the rotation of macroscopic magnetization equals the average magnetization current density. The equations provided detail how individual particle magnetization current densities, denoted as ##\vec{j}_{\text{mag}}^{(i)}##, contribute to the overall macroscopic magnetization ##\vec{M}(\vec{r})##. The proof indicates that the curl of the macroscopic magnetization relates directly to the average magnetization current density, establishing a clear mathematical framework for understanding these concepts.

PREREQUISITES
  • Understanding of vector calculus, particularly curl and divergence operations.
  • Familiarity with concepts of magnetization and magnetic moments in physics.
  • Knowledge of mesoscopic volume definitions and their implications in magnetic systems.
  • Basic grasp of electric polarization and its mathematical treatment for comparative analysis.
NEXT STEPS
  • Study the derivation of electric polarization ##\vec{P}(\vec{r})## and its relation to polarization charge density ##\rho_{\text{pol}}(\vec{r})##.
  • Explore advanced vector calculus techniques, focusing on applications in electromagnetism.
  • Investigate the implications of stationary magnetization current densities in various physical systems.
  • Examine case studies of macroscopic magnetization in materials with varying magnetic properties.
USEFUL FOR

Physicists, particularly those specializing in electromagnetism and materials science, as well as researchers focusing on magnetic properties and their mathematical descriptions.

LeoJakob
Messages
24
Reaction score
2
Thread moved from the technical forums to the schoolwork forums
Homework Statement
rotation of macroscopic magnetization = averege (Magnetization current density )
Relevant Equations
##(\vec{\nabla} \cdot \vec{j}_{\text{mag}}^{(i)}=0##

,## \vec{M}(\vec{r})=\frac{1}{v} \sum_{i=1}^{N} \vec{m}_{i}##

,##\vec{m}_{i}=\frac{1}{2} \int\left(\vec{r}^{\prime}-\vec{R}_{i}\right) \times \vec{j}_{mag}^{(i)}\left(\vec{r}^{\prime}\right) d^{3} \vec{r}^{\prime}##

, ##\vec{\nabla} \times(\vec{A} \times \vec{B})=(\vec{B} \cdot \vec{\nabla}) \vec{A}-\vec{B}(\vec{\nabla} \cdot \vec{A})+\vec{A}(\vec{\nabla} \cdot \vec{B})-(\vec{A} \cdot \vec{\nabla}) \vec{B} ##
In the headline to the question the statement should have been:
rotation of macroscopic magnetization = averege (Magnetization current density )

The Magnetization current densities ##\vec{j}_{\text{mag}}^{(i)}## of individual particles ##i## are stationary ##(\vec{\nabla} \cdot \vec{j}_{\text{mag}}^{(i)}=0##) and generate the magnetic moments
$$
\vec{m}_{i}=\frac{1}{2} \int\left(\vec{r}^{\prime}-\vec{R}_{i}\right) \times \vec{j}_{mag}^{(i)}\left(\vec{r}^{\prime}\right) d^{3} \vec{r}^{\prime}
$$
at the locations##\vec{R}_{i}##. Analogous to the macroscopic electric polarization, introduce the macroscopic magnetization as the average magnetic dipole moment per mesoscopic volume ##v##:
$$
\vec{M}(\vec{r})=\frac{1}{v} \sum_{i=1}^{N} \vec{m}_{i}
$$

Proof:
$$
\vec{\nabla} \times \vec{M}=\overline{\vec{j}_{mag}}
$$

Attempt
$$\begin{array}{l}\vec{\nabla} \times \vec{M}=\vec{\nabla} \times\left(\frac{1}{V} \sum \limits_{i=1}^{N} \vec{m}_{i}\right) \\ =\frac{1}{V} \vec{\nabla} \times\left(\sum \limits_{i=1}^{n} \frac{1}{2} \int\left(\vec{r}^{\prime}-\vec{R}_{i}\right) \times \vec{j}_{\text {mag }}^{(i)}\left(\vec{r}^{\prime}\right) \partial^{3} \vec{r}^{\prime}\right) \\ =\frac{1}{2 V} \sum \limits_{i=1}^{n} \underbrace{\vec{\nabla} \times\left(\left(\overrightarrow{r^{\prime}}-\overrightarrow{R_{i}}\right) \times \overrightarrow{j_{\text {mag }}^{(i)}}\left(\overrightarrow{r^{\prime}}\right)\right)}_{=(i)} d^{3} \vec{r}^{\prime} \\
= ?\end{array}$$

$$
\begin{array}{l}(i)=\left(\vec{j}_{\text {mag }}^{(i)}\left(\vec{r}^{\prime}\right) \cdot \vec{\nabla}\right)\left(\vec{r}^{\prime}-\vec{R}_{i}\right)- \vec{j}_{\text {mag }}^{(i)}\left(\vec{r}^{\prime}\right) \left(\vec{\nabla} \cdot\left(\vec{r}^{\prime}-\vec{R}_{i}\right)\right) \\ +\left(\vec{r}^{\prime}-\vec{R}_{i}\right)(\underbrace{\vec{\nabla} \cdot \vec{j}_{\text {mag }}^{(i)}\left(\vec{r}^{\prime}\right)}_{=0})-\left[\left(\vec{r}^{\prime}-\overrightarrow{R_{i}}\right) \cdot \vec{\nabla}\right] \vec{j}_{\text {mag }}^{(i)}\left(\vec{r}^{\prime}\right)
\\
\\
=\left(\vec{j}_{\text {mag }}^{(i)}\left(\vec{r}^{\prime}\right) \cdot \vec{\nabla}\right)\left(\vec{r}^{\prime}-\vec{R}_{i}\right)- \vec{j}_{\text {mag }}^{(i)}\left(\vec{r}^{\prime}\right) \left(\vec{\nabla} \cdot\left(\vec{r}^{\prime}-\vec{R}_{i}\right)\right) \\
-\left[\left(\vec{r}^{\prime}-\overrightarrow{R_{i}}\right) \cdot \vec{\nabla}\right] \vec{j}_{\text {mag }}^{(i)}\left(\vec{r}^{\prime}\right) \end{array} $$

I don’t have more ideas right now, can someone help me?
 
Last edited:
Physics news on Phys.org
LeoJakob said:
The Magnetization current densities ##\vec{j}_{\text{mag}}^{(i)}## of individual particles ##i## are stationary ##(\vec{\nabla} \cdot \vec{j}_{\text{mag}}^{(i)}=0##) and generate the magnetic moments
$$
\vec{m}_{i}=\frac{1}{2} \int\left(\vec{r}^{\prime}-\vec{R}_{i}\right) \times \vec{j}_{mag}^{(i)}\left(\vec{r}^{\prime}\right) d^{3} \vec{r}^{\prime}
$$
at the locations##\vec{R}_{i}##. Analogous to the macroscopic electric polarization, introduce the macroscopic magnetization as the average magnetic dipole moment per mesoscopic volume ##v##:
$$
\vec{M}(\vec{r})=\frac{1}{v} \sum_{i=1}^{N} \vec{m}_{i}
$$

As indicated, ##\vec M (\vec r)## is a function of the position vector ##\vec r## for a point in the medium. So, the right-hand side of the above equation for ##\vec M(\vec r)## must be a function of ##\vec r##. Note, however, that ##\vec m_i## for the magnetization of the ##i^{th}## particle located at ##\vec R_i## does not depend on the vector ##\vec r##.

However, the expression ##\frac 1 v \sum_{i=1}^N \vec m_i## does depend on ##\vec r## because the “mesoscopic” volume ##v## is assumed to be centered on ##\vec r##. The sum is over all particles located in ##v##. So, the sum does depend on ##\vec r## even though ##m_i## for a particular particle does not depend on ##\vec r##.

When forming the curl (“rotation”) of ##\vec M(\vec r)##, the derivative operators are derivatives with respect to the components of ##\vec r##. These derivative operators do not act on ##\vec r’## appearing in the expression for ##\vec m_i##.

The change in ##\vec M(\vec r)## for a small change ##\vec {dr}## in ##\vec r## is due to shifting the location of the volume ##v## by ##\vec {dr}## and performing the sum ##\sum_{i= 1}^N \vec m_i## over the particles in this shifted volume.

So, it’s pretty tricky. The text says “Analogous to the macroscopic electric polarization, introduce the macroscopic magnetizarion…”. Perhaps the textbook has already done a similar calculation for electric polarization ##\vec P(\vec r)## in deriving ##\vec{\nabla} \cdot \vec P(\vec r) = - \rho_{\text {pol}}(\vec r)##, where ##\rho_{\text {pol}}## is the polarization charge density. If so, it might be helpful to study this derivation before tackling the magnetization problem.
 
  • Like
Likes   Reactions: LeoJakob

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
10
Views
2K
Replies
7
Views
3K
  • · Replies 11 ·
Replies
11
Views
3K
Replies
17
Views
3K