Undergrad Rotational invariance of cross product matrix operator

Click For Summary
SUMMARY

The discussion centers on the rotational invariance of the cross product matrix operator, specifically examining whether the equation $$\mathbf R \left[ a \right]_\times = \left[ \mathbf R a \right]_\times \mathbf R$$ holds true. Participants confirm that the rotational invariance of the vector cross product implies this relationship, leading to the conclusion that $$\left[\mathbf R a \right]_\times \mathbf C \left[ \mathbf R a \right]_\times^T = \left( \mathbf R \left[ a \right]_\times \right) \left( \mathbf R^T \mathbf C \mathbf R \right) \left( \mathbf R \left[ a \right]_\times \right)^T$$ is valid for any positive semi-definite matrix C. The discussion emphasizes the mathematical properties of rotation matrices and their application in vector operations.

PREREQUISITES
  • Understanding of 3D vector mathematics
  • Familiarity with rotation matrices in linear algebra
  • Knowledge of the cross product and its properties
  • Basic concepts of matrix operations and positive semi-definite matrices
NEXT STEPS
  • Study the properties of rotation matrices in 3D space
  • Learn about the implications of the cross product in vector calculus
  • Explore the application of positive semi-definite matrices in engineering
  • Investigate the relationship between Lie groups and their algebras, specifically SO(3)
USEFUL FOR

Mathematicians, physicists, and engineers working with 3D transformations, particularly those involved in robotics, computer graphics, and physics simulations.

Filip Larsen
Gold Member
Messages
2,041
Reaction score
978
TL;DR
Do rotational invariance of the vector cross product also carry over to the cross product matrix operator?
Given that the normal vector cross product is rotational invariant, that is $$\mathbf R(a\times b) = (\mathbf R a)\times(\mathbf R b),$$ where ##a, b \in \mathbb{R}^3## are two arbitrary (column) vectors and ##\mathbf R## is a 3x3 rotation matrix, and given the cross product matrix operator defined by $$ \left[a\right]_\times = \begin{bmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{bmatrix} ,$$ such that ##a \times b = \left[a\right]_\times b##, my question now is if rotational invariance also applies for this operator, that is if it in general holds that $$\mathbf R \left[ a \right]_\times \stackrel{?}{=} \left[ \mathbf R a \right]_\times \mathbf R$$ Specifically for my current use, with ##\mathbf C## being 3x3 (positive semi-definite) matrix and utilizing ##\mathbf R^{-1} = \mathbf R^T## holds for a rotation matrix can I then conclude that ## \left[\mathbf R a \right]_\times \mathbf C \left[ \mathbf R a \right]_\times^T = \left( \mathbf R \left[ a \right]_\times \mathbf R^T \right) \mathbf C \left(\mathbf R \left[ a \right]_\times \mathbf R^T \right)^T = \left( \mathbf R \left[ a \right]_\times \right) \left( \mathbf R^T \mathbf C \mathbf R \right) \left( \mathbf R \left[ a \right]_\times \right)^T## always holds, as I am inclined to believe?

My (engineering) intuition tries to tell me that since the relation with the question marks holds when applied to a column vector, due to ##\left( \mathbf R \left[ a \right]_\times \right) b = \mathbf R \left( a\times b \right) = \left(\mathbf R a\right) \times \left(\mathbf R b\right) = \left( \left[ \mathbf R a \right]_\times\right) \left( \mathbf R b \right) = \left( \left[ \mathbf R a \right]_\times \mathbf R \right) b##, and since an equation involving multiplication of a 3x3 matrix can be separated into 3 equations with multiplication of each column vector of the matrix, then the relation must also hold when combined back into a general 3x3 matrix, but I worry if such math hand waving has math holes in it my engineering intuition can't see.
 
Physics news on Phys.org
If we had the conjugation as operation: ##a\longmapsto \mathbf{R}a\mathbf{R}^{-1}## then invariance would follow directly by the Lie group ##SO(3)## operation on its Lie algebra.

If we only have a rotation once on the left, I think the quickest way is simply to check it. The situation is symmetric in all coordinates, so it is sufficient to check a rotation with one given angle around the z−axis. Thus you get either a proof or a counterexample: ##\mathbf{R}_z(\varphi)([a]_{\times} b) \stackrel{?}{=} (\mathbf{R}_z)(\varphi)a)_\times (\mathbf{R}_z\varphi)b) .##
 
fresh_42 said:
Thus you get either a proof or a counterexample: ##\mathbf{R}_z(\varphi)([a]_{\times} b) \stackrel{?}{=} (\mathbf{R}_z)(\varphi)a)_\times (\mathbf{R}_z\varphi)b) ##.

In my answer below assume you mean ##\mathbf{R}_z(\varphi)([a]_{\times} b) \stackrel{?}{=} [\mathbf{R}_z(\varphi)a]_\times (\mathbf{R}_z(\varphi)b)##, with ##b## being a 3x3 matrix.

I was rather hoping not having to write out the full equations in scalars, even if it only involves rotation around a single axis. I know I am more or less repeating my question from before, but to prove it when ##b## is a matrix would it then be sufficient to decompose ##b## into column vectors, apply the relation known to be true when ##b## is a vector, and the assemble it back again to show you end up with the same final vector?
 
Filip Larsen said:
In my answer below assume you mean ##\mathbf{R}_z(\varphi)([a]_{\times} b) \stackrel{?}{=} [\mathbf{R}_z(\varphi)a]_\times (\mathbf{R}_z(\varphi)b)##, with ##b## being a 3x3 matrix.
No, ##b## remains a vector.
I was rather hoping not having to write out the full equations in scalars, even if it only involves rotation around a single axis.
It makes two matrix multiplications and two matrix times vector multiplications. That's not too many to do. As I said, the natural operation would be a conjugation in which case there is nothing left to prove. But in that case we would have (in Lie algebra notation) ##R[a,b]R^{-1}=RabR^{-1}-RbaR^{-1}##, i.e. the rotations in the middle cancel. If they don't as in your case, then symmetry will be lost: ##Rab-Rba\stackrel{?}{=}RaRb-RbRa##. This means ##ab-ba=a\times b \stackrel{?}{=}aRb-bRa##. This doesn't look true, although intuition say it is. I would look for a counterexample, that is, you have to do the calculation anyway.
I know I am more or less repeating my question from before, but to prove it when ##b## is a matrix would it then be sufficient to decompose ##b## into column vectors, apply the relation known to be true when ##b## is a vector, and the assemble it back again to show you end up with the same final vector?
I don't see how ##b## is a matrix.
 
fresh_42 said:
I don't see how ##b## is a matrix.

Let me go with that first as I suspect we are perhaps misunderstanding each other here.

As I tried to indicate in my first post, I know from the properties of the cross product matrix operator ##\left[\cdot\right]_\times## and from the rotational invariance of the vector cross product that $$ \begin{align}
\mathbf R \left[a\right]_\times b & = \mathbf R \left( \left[a\right]_\times b \right) \nonumber \\
& = \mathbf R(a\times b) \nonumber \\
& = (\mathbf R a)\times(\mathbf R b) \nonumber \\
& = \left[ \mathbf R a \right]_\times (\mathbf R b) \nonumber \\
& = \left( \left[ \mathbf R a \right]_\times \mathbf R \right) b \nonumber
\end{align} ,$$ where as before ##a, b## are vectors and ##\mathbf R## is a rotation matrix. This implies (as far as I can see) that $$\mathbf R \left[a\right]_\times = \left[ \mathbf R a \right]_\times \mathbf R$$ is a valid matrix equality. So, if you are suggesting that I prove ## \mathbf{R}_z(\varphi)([a]_{\times} b) \stackrel{?}{=} [\mathbf{R}_z(\varphi)a]_\times (\mathbf{R}_z(\varphi)b)## with ##b## being a vector then I would claim I already known this to be true.

What I am asking, to repeat, is if there are any reason why the same shouldn't also hold as I expect when applied to a 3x3 matrix ##\mathbf B##, that is if there is any reason why $$ \mathbf{R}([a]_{\times}\mathbf B) = [\mathbf{R}a]_\times \mathbf{R}\mathbf B$$ or, even more to the point regarding my intended use of this, if $$ \left[\mathbf R a \right]_\times \mathbf C \left[ \mathbf R a \right]_\times^T = \left( \mathbf R \left[ a \right]_\times \right) \left( \mathbf R^T \mathbf C \mathbf R \right) \left( \mathbf R \left[ a \right]_\times \right)^T $$ holds.
 
How is the third equation true? I thought that that was the problem. If it is, then you can of course multiply it by any matrix that you want.
 
  • Like
Likes Filip Larsen
fresh_42 said:
How is the third equation true?

If you mean ##\mathbf R(a \times b) = (\mathbf Ra)\times(\mathbf Rb)## then that is true due to the rotational invariance of the cross product.

fresh_42 said:
If it is, then you can of course multiply it by any matrix that you want.

OK, assuming this is a real math rated "of course" then I guess I was just worried about nothing :smile:
 
  • Like
Likes fresh_42
Filip Larsen said:
OK, assuming this is a real math rated "of course" then I guess I was just worried about nothing :smile:
Yep.
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
757
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
542
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
13
Views
1K