Rydberg constant for hydrogen atom and Balmer series

In summary, the Rydberg constant for the hydrogen atom is a fundamental physical constant that describes the wavelengths of spectral lines in hydrogen's emission spectrum. It is key to the Balmer series, which represents the visible spectral lines resulting from electron transitions from higher energy levels to the second energy level. The Rydberg formula quantifies these transitions, allowing the calculation of the wavelengths of the Balmer series lines, which are significant in understanding atomic structure and electron behavior in hydrogen.
  • #1
sss1
50
2
Homework Statement
Does the Rydberg constant change for different Balmer series lines? Like H_α, H_β, etc. according to the formula, it shouldn’t right, it should only change with the amount of electrons and nucleons? I googled some data and I put them into the formula 1/lambda=R(1/n_f^2-1/n_i^2) and tried for several wavelengths for hydrogen (n_f=2), I ended up with pretty close values but with minor differences. I was wondering if this is due to the accuracy of the instruments measuring the wavelength? Or is it meant to differ for different Balmer series lines?
Relevant Equations
1/lambda=R(1/n_f^2-1/n_i^2)
^^
 
Physics news on Phys.org
  • #2
The Rydberg constant is a combination of fundamental constants and so it does not change. The discrepancies you are seeing are probably due to the fact that the Bohr model is only an approximate model and ignores some effects, such as fine structure. Or it could also be due to the accuracy of the measurements, as you said.
 
  • #3
phyzguy said:
The Rydberg constant is a combination of fundamental constants and so it does not change. The discrepancies you are seeing are probably due to the fact that the Bohr model is only an approximate model and ignores some effects, such as fine structure. Or it could also be due to the accuracy of the measurements, as you said.
Alright, thanks!
 
Back
Top