S.aux.26 our-sided die has three blue faces, and one red face.......

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
Click For Summary
SUMMARY

The discussion focuses on the probabilities associated with a four-sided die featuring three blue faces and one red face. The probabilities are established as P(B) = 3/4 for blue and P(R) = 1/4 for red. A tree diagram is used to illustrate the outcomes, leading to calculations of P(X=2) = 13/16 and P(X=3) = 3/16 for Guiseppi's scoring game. The expected value of the score X is calculated as 35/16, confirming the probability distribution table for X.

PREREQUISITES
  • Understanding of basic probability concepts
  • Familiarity with tree diagrams for probability outcomes
  • Knowledge of expected value calculations
  • Ability to construct probability distribution tables
NEXT STEPS
  • Learn advanced probability theory concepts, including conditional probability
  • Explore Markov chains and their applications in probability
  • Study expected value in more complex scenarios, such as continuous distributions
  • Investigate game theory principles related to scoring systems
USEFUL FOR

Students studying probability, game theorists, mathematicians, and anyone interested in understanding scoring systems in games of chance.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
four-sided die has three blue face, and one red face.
The die is rolled.
B be the event blue face lies down, and R be the event a red face lands down
a Write down
i $\quad P(B)=\dfrac{3}{4}\quad$ ii $\quad P(R)=\dfrac{1}{4}$

b If the blue face lands down, the dieu is not rolled again. If the red face lands down, the die is rolled once again.
This is represented by the following tree diagram, where p, s, t are probabilities.

276.png


Find the value of p, of s and of t.

c Guiseppi plays a game where he rolls the die.
If a blue face lands down, he scores 2 and is finished.
If the red face lands down, he scores 1 and rolls one more time.
Let X be the total score obtained.
$ \quad \texit{
Show that } $P(X=3)=\frac{3}{16}$
[ii] Find $\quad P(X=2)$

[d i] Construct a probability distribution table for X. [5 marks]
[ii] Calculate the expected value of X.

[e] If the total score is 3, Guiseppi wins . If the total score is 2, Guiseppi gets nothing.
Guiseppi plays the game twice. Find the probability that he wins exactly .

ok I only time to do the first question so hope going in right direction
I know the answers to all this is quickly found online but I don't learn too well by C/P
 
Last edited:
Physics news on Phys.org
a) Yes, the probability of Blue on one roll is 3/4 and the probability if Red is 1/4.

b) On the diagram, p is obviously 3/4. q is (1/4)(3/4)= 3/16. r is (1/4)(1/4)= 1/16.
(Note that 3/4+ 3/16+ 1/16= 1.)

c) The probability of Blue is 3/4 and gives a value 2, The probability of Red, Blue is 3/16 and gives a value 1+ 2= 3. The probability of Red, Red is 1/16 and gives a value 1+ 1= 2. So P(X= 2) is 3/4+ 1/16= 12/16+ 1/16= 13/16. P(X= 3) is 3/16.

di) Since 2 and 3 are the only possible values for X, P(X= 2)= 13/16, P(X= 3)= 3/16 IS the "probability distribution table" for X. (And of course 13/16+ 3/16= 16/16= 1.)

dii) The expected value is (3/4)(2)+ (3/16)(3)+ (1/16)(2)= 24/16+ 9/16+ 2/16= 35/16= 2 and 3/16.

e) The probability Giussepe loses both games is (13/16)(13/16)= 169/256. The probability Giussepe wins one game and losess the other is (13/16)(3/16)+ (3/16)(13/16)= 78/256. The probability Giussepe wins both games is (3/16)(3/16)= 9/256. (Once again, observe that 169/256+ 78/256+ 9/256= 256/256= 1.)
 
Last edited:
Mahalo
that was a great help
ill try the next one all the way thru
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
2
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
23
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
8K
  • · Replies 125 ·
5
Replies
125
Views
20K
Replies
10
Views
3K
Replies
2
Views
2K