Learn how to calculate velocity with S>V>T help and practice questions

  • Context: Undergrad 
  • Thread starter Thread starter spam_hammer
  • Start date Start date
  • Tags Tags
    Velocity
Click For Summary
SUMMARY

This discussion focuses on calculating velocity and displacement using exponential functions in calculus. The primary equations discussed are v = e^t and v = e^(2t - 1), with participants exploring how to derive time (t) from velocity (v) using natural logarithms. The correct method for calculating acceleration through differentiation is emphasized, particularly using the chain rule. Participants also clarify the process of integrating to find displacement over a given time interval.

PREREQUISITES
  • Understanding of calculus concepts, specifically differentiation and integration.
  • Familiarity with exponential functions and their properties.
  • Knowledge of the chain rule in calculus.
  • Ability to apply natural logarithms in solving equations.
NEXT STEPS
  • Learn how to apply the chain rule in differentiation with exponential functions.
  • Study the process of integration for exponential functions, focusing on definite integrals.
  • Explore the use of natural logarithms in solving exponential equations.
  • Practice calculating displacement from velocity functions using integration techniques.
USEFUL FOR

Students preparing for mathematics exams, particularly those studying calculus and physics, as well as educators looking for practical examples of applying calculus to real-world problems.

spam_hammer
Messages
6
Reaction score
0
Hi all,
This is my first post so I hope this doesn't break any rules, to the best of my knowledge it doesnt, but let me know.

i am curently revising for a maths exam and i am practising questions on velocity.

how should i go about calculating a questoin in the form

v= e^t

at what value of t does the particle have a velocity of x ?


I have removed the numbers so that you guys arent answering the actual question for me. I am unsure if the question can still be answered as i have written it , if not i will post the actual figures.


also just to check an answer I have calculated ( I think):

find the acceleration of a particle whose velocity v=e^3t-2 at t=1

My answer acceleration T= 1 m/s^2

thanks
 
Physics news on Phys.org
For the first question, if v denotes velocity, then you have v = e^t. You want to know when v, or e^t, is equal to x. So you have x = e^t. Use the natural logarithm to solve for t.

For your second question, your answer is wrong. If v = e^(3t) - 2, then you know that the acceleration = dv/dt. Calculate dv/dt at t = 1.
 
okay so dv/dt at t=1

v=e3t-2 t=1 so v= e1

differentiation = 1e0= 1

I'm afraid I am a maths dunce so i can't see where i went wrong

For the first question, if v denotes velocity, then you have v = e^t. You want to know when v, or e^t, is equal to x. So you have x = e^t. Use the natural logarithm to solve for t.

I am unsure how to use ln here?

apologies for my simpleness of mind :P
 
v = e^(3t - 2)

Differentiate using the chain rule. Then just plug in 1 wherever you see t.

For the second question if x = e^t, then ln(x) = ln(e^t) = tln(e)?

What's ln(e) equal to?
 
i am going to say, tentatively, 1 ?
 
v = e^(3t-2)
First take the derivative, then plug in t=1.
dv/dt = 3e^(3t-2) (chain rule)
t=1
dv/dt = 3e

v=e^t
ln v = lne^t = tlne = t
So: t = lnv
 
Evening all,

another day, another revision question in the endless battle against my brain to make it understand chain rule.

this time I think I have worked through it and would much apreciate it if someone would notify me of the myrriad mistakes with which it is ridden i am sure.

okay question :
The velocity v in m s-1 of a moving body at time tseconds is given by v=e2t-1 when t=0.5 displacement equals 10m. Find the displacement when t=1


My workings :

Chain rule v= eu where u= 2t-1


intergrate 2t-1 = t2-1t+c


when t = 0.5 displacement (a) = 10

Then using this to find out value for c:

((0.5)2-0.5+c) *e 2(0.5)-1=10

(-0.25+c)*e0=10

(-0.25+c)* 1 = 10

-0.25= 10 -c

-10.25= c

substituiting this information back into the question



a=((1)2 - 1(1) -10.25)* e 2(1)-1

-0.25 * e = -27.9



the first thing that makes me think i am wrong is the negative value for displacement .



Im not sure if any of this even makes sense. please let me know
 
spam_hammer said:
Evening all,

another day, another revision question in the endless battle against my brain to make it understand chain rule.

this time I think I have worked through it and would much apreciate it if someone would notify me of the myrriad mistakes with which it is ridden i am sure.

okay question :
The velocity v in m s-1 of a moving body at time tseconds is given by v=e2t-1 when t=0.5 displacement equals 10m. Find the displacement when t=1My workings :

Chain rule v= eu where u= 2t-1intergrate 2t-1 = t2-1t+c

Looks like you have to calculate the definite integral!

The anti-derivative of e2t-1 is (1/2)e2t-1.
You probably don't understand why, so that's why I'll explain. If you take the derivative of, say: eax, the derivative is aeax (chain rule- a is the derivative of ax). When you take the anti-derivative, you have to 'undo' this extra factor a that comes up front, so you divide by it. Suppose we have again eax, the anti-derivative will be (1/a)eax, because if we differentiate it again we get back to eax.

So what you have to calculate is:

int01[(1/2)e2t-1] dt

Remember that you don't have to find the constant when taking a definite integral (this makes physical sense as well; it only matters how much distance has been traveled in the time interval from 0 to 1, not how much had been traveled before or after, which would basically be the meaning of having a constant in this case. Hope this doesn't confuse you. Forget about it if you don't get it )
 
Last edited:

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
1
Views
5K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
5K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
19
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K