MHB S4.13.t.71 angles of triangle PQR

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Angles Triangle
Click For Summary
The discussion focuses on calculating the angles of triangle PQR with vertices at points P(0,-1,2), Q(4,4,1), and R(-4,4,6). Participants outline the process of finding vectors PQ, QR, and RP, followed by calculating their dot products and magnitudes. The angles are derived using the cosine formula, resulting in approximate angle measurements of 0.921 radians, 0.753 radians, and 1.468 radians. Observations highlight the importance of careful vector subtraction and sign management in dot product calculations. The interior angle sum confirms that the angles add up to 180 degrees.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{s4.13.t.71}$
$\textsf{For the given points
$P(0,-1,2), Q(4,4,1), R(-4,4,6)$}$
$\textsf{Find the approximate measurements
of the angles of $\triangle$ PQR. }$

$\textit{Ok, presume its get vectors first
then use Dot Product...}$

$\textit{First find vectors $\vec{PQ},\vec{QR},$ and $\vec{RP}$}$
\begin{align*}\displaystyle
\vec{PQ}&=\langle 0-4,-1-4, 2-1 \rangle =\langle -4,-5,1 \rangle\\
\vec{QR}&=\langle 4+4,-4-4, 2-1 \rangle =\langle 8,0,-5 \rangle\\
\vec{RP}&=\langle-4-0,4+1,6-2 \rangle=\langle -4,0,4 \rangle\\
\end{align*}
$\textit{Calculate the dot product and magnitudes of first two vectors.}$\begin{align*}\displaystyle
\vec{PQ}\cdot\vec{QR}&=(-4)(8)+(-5)(0)+(1)(-5)=-37\\
|\vec{PQ}|&=\sqrt{(-4)^2+(-5)^2+(1)^2}=\sqrt{41}\\
|\vec{QR}|&=\sqrt{(8)^2+(0)^2+(-5)^2}=\sqrt{99}\\
\end{align*}
$\textit{now apply angle formula}$
\begin{align*}\displaystyle
\theta&=\cos^{-1}\left[\frac{\vec{PQ}\cdot\vec{QR}}{|\vec{PQ}||\vec{QR}|}\right]\\
&=\cos^{-1}\left[\frac{-37}{|\sqrt{41}||\sqrt{99}}\right]\\
&=\cos^{-1}(-0.5807)=2.1905 radians
\end{align*}

I think so far...
 
Last edited:
Physics news on Phys.org
Your approach is correct. I haven't checked the arithmetic. :p
 
Two of the dot products are negative suggesting two of the angles are $>90^\circ$. (Wondering)
 
greg1313 said:
Two of the dot products are negative suggesting two of the angles are $>90^\circ$. (Wondering)

Sorry spent an hour trying to find the errors but still
so before I take the arccos would this be correct
I found about 5 oops

$\textsf{ For the given points
P(0,-1,2), Q(4,4,1), R(-4,4,6) }\\$

$\textsf{Find the approximate measurements
of the angles of $\triangle$ PQR. }\\$

$\textit{First find vectors $\vec{PQ},\vec{QR},$ and $\vec{RP}$}$
\begin{align*}\displaystyle
\vec{PQ}&=\langle (0-4),(-1-4),(2-1) \rangle =\langle -4,-5,1 \rangle\\
\vec{QR}&=\langle (4+4),(4-4),(1-6) \rangle =\langle 8,0,-5 \rangle\\
\vec{RP}&=\langle (-4-0),(4+1),(6-2) \rangle=\langle -4,5,4 \rangle\\
\end{align*}
$\textit{Calculate the dot product and magnitudes of first two vectors.}$
\begin{align*}\displaystyle
\vec{PQ}\cdot\vec{QR}&=(-4)(8)+(-5)(0)+(1)(-5)=-37\\
\vec{QR}\cdot\vec{RP}&=(8)(-4)+(0)(5)+(-5)(4)=-52\\
\vec{RP}\cdot\vec{PQ}&=(-4)(-4)+(-5)(5)+(4)(1)=-5\\
|\vec{PQ}|&=\sqrt{(-4)^2+(-5)^2+(1)^2}=\sqrt{42}\\
|\vec{QR}|&=\sqrt{(8)^2+(0)^2+(-5)^2}=\sqrt{89}\\
|\vec{RP}|&=\sqrt{(-4)^2+(5)^2+(4)^2}=\sqrt{57}\\
\end{align*}

View attachment 7087
W|A answer
0.753 radians | 1.468 radians | 0.921 radians
interior angle sum | 180° = π rad≈3.142 rad)
 

Attachments

  • 8.5.71.PNG
    8.5.71.PNG
    5.3 KB · Views: 117
Last edited:
I have a couple of observations:
  1. When subtracting 2 vectors we have that $\vec{PQ}=\vec{OQ}-\vec{OP}$.
    That is, a vector is the endpoint minus the starting point.
    It appears that this has been reversed.
  2. The dot product is that: $\vec{PQ}\cdot\vec{PR} = PQ\cdot PR\cdot \cos\angle P$.
    And $\vec{PR}=-\vec{RP}$, meaning we have to be careful with our signs. (Thinking)
 
I like Serena said:
I have a couple of observations:
  1. When subtracting 2 vectors we have that $\vec{PQ}=\vec{OQ}-\vec{OP}$.
    That is, a vector is the endpoint minus the starting point.
    It appears that this has been reversed.
  2. The dot product is that: $\vec{PQ}\cdot\vec{PR} = PQ\cdot PR\cdot \cos\angle P$.
    And $\vec{PR}=-\vec{RP}$, meaning we have to be careful with our signs. (Thinking)

OK here is the redo...

$\textit{Calculate the dot product and magnitudes of first two vectors.}$
\begin{align*}\displaystyle
\vec{PQ}\cdot\vec{QR}&=(-4)(8)+(-5)(0)+(1)(-5)=37\\
\vec{QR}\cdot\vec{RP}&=(8)(-4)+(0)(5)+(-5)(4)=52\\
\vec{RP}\cdot\vec{PQ}&=(-4)(-4)+(-5)(5)+(4)(1)=5\\
|\vec{PQ}|&=\sqrt{(-4)^2+(-5)^2+(1)^2}=\sqrt{42}\\
|\vec{QR}|&=\sqrt{(8)^2+(0)^2+(-5)^2}=\sqrt{89}\\
|\vec{RP}|&=\sqrt{(-4)^2+(5)^2+(4)^2}=\sqrt{57}\\
\end{align*}
$\textit{Apply angle formula}$
\begin{align*}\displaystyle
{\angle PQR}
&=\cos^{-1}\left[\frac{\vec{PQ}\cdot\vec{QR}}{|\vec{PQ}||\vec{QR}|}\right]
=\cos^{-1}\left[\frac{37}{|\sqrt{42}||\sqrt{89}|}\right]
=0.921 \textit{ rad}\\
{\angle QRP}
&=\cos^{-1}\left[\frac{\vec{QR}\cdot\vec{RP}}{|\vec{QR}||\vec{RP}|}\right]
=\cos^{-1}\left[\frac{52}{|\sqrt{89}||\sqrt{57}|}\right]
=0.753 \textit{ rad}\\
{\angle RPQ}
&=\cos^{-1}\left[\frac{\vec{RP}\cdot\vec{PR}}{|\vec{RP}||\vec{PR}|}\right]
=\cos^{-1}\left[\frac{5}{|\sqrt{57}||\sqrt{42}|}\right]
=1.468 \textit{ rad}
\end{align*}

$\textsf{triangle A(0,-1,2), B(4,4,1), C(-4,4,6) }\\$
$\textsf{ 0.921 radians \\ 0.753 radians \\ 1.468 radians }\\$
$\textsf{interior angle sum $180°= π= 3.142$}$

View attachment 7109
 

Attachments

  • 8.5.71o.PNG
    8.5.71o.PNG
    3.4 KB · Views: 119
Last edited: