S4.13.t.71 angles of triangle PQR

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Angles Triangle
Click For Summary

Discussion Overview

The discussion revolves around finding the approximate measurements of the angles of triangle PQR, defined by the points P(0,-1,2), Q(4,4,1), and R(-4,4,6). Participants explore vector calculations, dot products, and the application of the cosine formula to determine the angles, with a focus on both the methodology and potential errors in calculations.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant suggests starting with vectors and using the dot product to find angles.
  • Another participant notes that two of the dot products being negative indicates that two angles are greater than 90 degrees.
  • Several participants express concerns about potential errors in vector calculations and dot products, with one participant identifying a reversal in vector subtraction.
  • Participants recalculate dot products and magnitudes, leading to different angle measurements, with values such as 0.921 radians, 0.753 radians, and 1.468 radians being proposed.
  • There is a discussion about the correct application of the cosine formula and the importance of sign conventions in vector calculations.

Areas of Agreement / Disagreement

Participants do not reach a consensus on the calculations, as there are multiple competing views regarding the correctness of the vector definitions and the resulting angle measurements. Some participants express uncertainty about the calculations and suggest potential errors, while others present revised calculations.

Contextual Notes

There are noted discrepancies in vector definitions and calculations, with participants pointing out possible errors in the arithmetic and the application of vector subtraction. The discussion reflects a process of refinement and correction without a definitive resolution on the angle measurements.

Who May Find This Useful

This discussion may be useful for students and practitioners interested in vector mathematics, geometry, and the application of trigonometric principles in three-dimensional space.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{s4.13.t.71}$
$\textsf{For the given points
$P(0,-1,2), Q(4,4,1), R(-4,4,6)$}$
$\textsf{Find the approximate measurements
of the angles of $\triangle$ PQR. }$

$\textit{Ok, presume its get vectors first
then use Dot Product...}$

$\textit{First find vectors $\vec{PQ},\vec{QR},$ and $\vec{RP}$}$
\begin{align*}\displaystyle
\vec{PQ}&=\langle 0-4,-1-4, 2-1 \rangle =\langle -4,-5,1 \rangle\\
\vec{QR}&=\langle 4+4,-4-4, 2-1 \rangle =\langle 8,0,-5 \rangle\\
\vec{RP}&=\langle-4-0,4+1,6-2 \rangle=\langle -4,0,4 \rangle\\
\end{align*}
$\textit{Calculate the dot product and magnitudes of first two vectors.}$\begin{align*}\displaystyle
\vec{PQ}\cdot\vec{QR}&=(-4)(8)+(-5)(0)+(1)(-5)=-37\\
|\vec{PQ}|&=\sqrt{(-4)^2+(-5)^2+(1)^2}=\sqrt{41}\\
|\vec{QR}|&=\sqrt{(8)^2+(0)^2+(-5)^2}=\sqrt{99}\\
\end{align*}
$\textit{now apply angle formula}$
\begin{align*}\displaystyle
\theta&=\cos^{-1}\left[\frac{\vec{PQ}\cdot\vec{QR}}{|\vec{PQ}||\vec{QR}|}\right]\\
&=\cos^{-1}\left[\frac{-37}{|\sqrt{41}||\sqrt{99}}\right]\\
&=\cos^{-1}(-0.5807)=2.1905 radians
\end{align*}

I think so far...
 
Last edited:
Physics news on Phys.org
Your approach is correct. I haven't checked the arithmetic. :p
 
Two of the dot products are negative suggesting two of the angles are $>90^\circ$. (Wondering)
 
greg1313 said:
Two of the dot products are negative suggesting two of the angles are $>90^\circ$. (Wondering)

Sorry spent an hour trying to find the errors but still
so before I take the arccos would this be correct
I found about 5 oops

$\textsf{ For the given points
P(0,-1,2), Q(4,4,1), R(-4,4,6) }\\$

$\textsf{Find the approximate measurements
of the angles of $\triangle$ PQR. }\\$

$\textit{First find vectors $\vec{PQ},\vec{QR},$ and $\vec{RP}$}$
\begin{align*}\displaystyle
\vec{PQ}&=\langle (0-4),(-1-4),(2-1) \rangle =\langle -4,-5,1 \rangle\\
\vec{QR}&=\langle (4+4),(4-4),(1-6) \rangle =\langle 8,0,-5 \rangle\\
\vec{RP}&=\langle (-4-0),(4+1),(6-2) \rangle=\langle -4,5,4 \rangle\\
\end{align*}
$\textit{Calculate the dot product and magnitudes of first two vectors.}$
\begin{align*}\displaystyle
\vec{PQ}\cdot\vec{QR}&=(-4)(8)+(-5)(0)+(1)(-5)=-37\\
\vec{QR}\cdot\vec{RP}&=(8)(-4)+(0)(5)+(-5)(4)=-52\\
\vec{RP}\cdot\vec{PQ}&=(-4)(-4)+(-5)(5)+(4)(1)=-5\\
|\vec{PQ}|&=\sqrt{(-4)^2+(-5)^2+(1)^2}=\sqrt{42}\\
|\vec{QR}|&=\sqrt{(8)^2+(0)^2+(-5)^2}=\sqrt{89}\\
|\vec{RP}|&=\sqrt{(-4)^2+(5)^2+(4)^2}=\sqrt{57}\\
\end{align*}

View attachment 7087
W|A answer
0.753 radians | 1.468 radians | 0.921 radians
interior angle sum | 180° = π rad≈3.142 rad)
 

Attachments

  • 8.5.71.PNG
    8.5.71.PNG
    5.3 KB · Views: 130
Last edited:
I have a couple of observations:
  1. When subtracting 2 vectors we have that $\vec{PQ}=\vec{OQ}-\vec{OP}$.
    That is, a vector is the endpoint minus the starting point.
    It appears that this has been reversed.
  2. The dot product is that: $\vec{PQ}\cdot\vec{PR} = PQ\cdot PR\cdot \cos\angle P$.
    And $\vec{PR}=-\vec{RP}$, meaning we have to be careful with our signs. (Thinking)
 
I like Serena said:
I have a couple of observations:
  1. When subtracting 2 vectors we have that $\vec{PQ}=\vec{OQ}-\vec{OP}$.
    That is, a vector is the endpoint minus the starting point.
    It appears that this has been reversed.
  2. The dot product is that: $\vec{PQ}\cdot\vec{PR} = PQ\cdot PR\cdot \cos\angle P$.
    And $\vec{PR}=-\vec{RP}$, meaning we have to be careful with our signs. (Thinking)

OK here is the redo...

$\textit{Calculate the dot product and magnitudes of first two vectors.}$
\begin{align*}\displaystyle
\vec{PQ}\cdot\vec{QR}&=(-4)(8)+(-5)(0)+(1)(-5)=37\\
\vec{QR}\cdot\vec{RP}&=(8)(-4)+(0)(5)+(-5)(4)=52\\
\vec{RP}\cdot\vec{PQ}&=(-4)(-4)+(-5)(5)+(4)(1)=5\\
|\vec{PQ}|&=\sqrt{(-4)^2+(-5)^2+(1)^2}=\sqrt{42}\\
|\vec{QR}|&=\sqrt{(8)^2+(0)^2+(-5)^2}=\sqrt{89}\\
|\vec{RP}|&=\sqrt{(-4)^2+(5)^2+(4)^2}=\sqrt{57}\\
\end{align*}
$\textit{Apply angle formula}$
\begin{align*}\displaystyle
{\angle PQR}
&=\cos^{-1}\left[\frac{\vec{PQ}\cdot\vec{QR}}{|\vec{PQ}||\vec{QR}|}\right]
=\cos^{-1}\left[\frac{37}{|\sqrt{42}||\sqrt{89}|}\right]
=0.921 \textit{ rad}\\
{\angle QRP}
&=\cos^{-1}\left[\frac{\vec{QR}\cdot\vec{RP}}{|\vec{QR}||\vec{RP}|}\right]
=\cos^{-1}\left[\frac{52}{|\sqrt{89}||\sqrt{57}|}\right]
=0.753 \textit{ rad}\\
{\angle RPQ}
&=\cos^{-1}\left[\frac{\vec{RP}\cdot\vec{PR}}{|\vec{RP}||\vec{PR}|}\right]
=\cos^{-1}\left[\frac{5}{|\sqrt{57}||\sqrt{42}|}\right]
=1.468 \textit{ rad}
\end{align*}

$\textsf{triangle A(0,-1,2), B(4,4,1), C(-4,4,6) }\\$
$\textsf{ 0.921 radians \\ 0.753 radians \\ 1.468 radians }\\$
$\textsf{interior angle sum $180°= π= 3.142$}$

View attachment 7109
 

Attachments

  • 8.5.71o.PNG
    8.5.71o.PNG
    3.4 KB · Views: 129
Last edited:

Similar threads

  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
8
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K