MHB S6.12.4.35 Find the volume of the parallelepiped

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Volume
Click For Summary
To find the volume of the parallelepiped formed by the edges PQ, PR, and PS, the formula V = |a·(b×c)| is used, where a, b, and c are the direction vectors of the edges. The vectors are calculated as follows: PQ = 2i + j + k, PR = i - j + 2k, and PS = -2j + 3k. The cross product of PQ and PR is determined to be 3i - 3j - 3k, and the dot product with PS gives a volume of 3. The discussion emphasizes understanding the relationship between the edges and their direction vectors for accurate calculations.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{s6.12.4.35}$

$\textrm{Find the volume of theparallelepiped with adjacent edges
$PQ, PR$, and $PS$.}$

\begin{align*}\displaystyle
P(2,0,-1),& \, Q(4,1,0), \, R(3.-1.1), S(2,-2,2)\\
\end{align*}
ok I know the problem is basically solved with

\begin{align*}\displaystyle
V&=\left|a\cdot(b\times c)\right|
\end{align*}

but was ? about the edges thing!
 
Physics news on Phys.org
karush said:
$\tiny{s6.12.4.35}$

$\textrm{Find the volume of theparallelepiped with adjacent edges
$PQ, PR$, and $PS$.}$

\begin{align*}\displaystyle
P(2,0,-1),& \, Q(4,1,0), \, R(3.-1.1), S(2,-2,2)\\
\end{align*}
ok I know the problem is basically solved with

\begin{align*}\displaystyle
V&=\left|a\cdot(b\times c)\right|
\end{align*}

but was ? about the edges thing!

All that means is that the three edges touch each other...
 
Yes, you can't graph the edges because you don't know what the edges are!

PQ is the line segment from P(2, 0, -1) to Q(4, 1, 0). That line can be written, parametrically, as x= (4- 2)t+ 2= 2t+ 2, y= (1- 0)t+ 0= t, and z= (0- (-1))t- 1= t- 1. That way, when t= 0, x= 2, y= 0, and z= -1 and, if t= 1, x= 4, y= -1, and z= 0.

It has "direction vector", which is the "a" in your formula, (4- 2)i+ (1- 0)j+ (0-(-1))k= 2i+ j+ k.
 
$\vec{PQ} = 2i+j+k$

$\vec{PR} = i-j+2k$

$\vec{PS} = -2j+3k$

$$\vec{PQ} \times \vec{PR}=\begin{vmatrix}
i & j & k\\
2 & 1 & 1\\
1 & -1 & 2
\end{vmatrix}=3i-3j-3k$$

$|\vec{PS} \cdot (\vec{PQ} \times \vec{PR})| = |0 + 6 - 9| = 3$

graph shows edges translated to the origin ...
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
8
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 10 ·
Replies
10
Views
5K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K