MHB S6.7.r.19 Rational Expression Integral (complete the square?)

Click For Summary
The integral I = ∫(x+1)/(9x²+6x+5) dx can be solved by separating it into two fractions, allowing for substitution and completing the square. The first part integrates to (1/18)ln(9x²+6x+5) using the derivative of the denominator, while the second part involves completing the square in the denominator. The final result includes both a logarithmic and an arctangent term, specifically (1/9)arctan[(1/2)(3x+1)] + C. The discussion emphasizes the effectiveness of substitution and the method of completing the square in solving the integral.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\Large{S6.7.R.19}$

$$\displaystyle
I=\int\frac{x+1}{9{x}^{2}+6x+5}\, dx
=\frac{1}{18}\ln\left({9{x}^{2}+6x+5}\right)
+\frac{1}{9}\arctan\left[{\frac{1}{2}\left(3x+1\right)}\right]+C
$$
$\text{from the given I thought completing the square would be the way to solve this} \\$
$\text{but I don't see how this would result in the answer.}$
 
Physics news on Phys.org
karush said:
$\Large{S6.7.R.19}$

$$\displaystyle
I=\int\frac{x+1}{9{x}^{2}+6x+5}\, dx
=\frac{1}{18}\ln\left({9{x}^{2}+6x+5}\right)
+\frac{1}{9}\arctan\left[{\frac{1}{2}\left(3x+1\right)}\right]+C
$$
$\text{from the given I thought completing the square would be the way to solve this} \\$
$\text{but I don't see how this would result in the answer.}$

I would start by rewriting it in two separate fractions, one where a u substitution can be used... Notice that $\displaystyle \begin{align*} \frac{\mathrm{d}}{\mathrm{d}x}\,\left( 9\,x^2 + 6\,x + 5 \right) = 18\,x + 6 \end{align*}$, so we should probably rewrite the integral as...

$\displaystyle \begin{align*} \int{ \frac{x + 1}{9\,x^2 + 6\,x + 5} \,\mathrm{d}x } &= \frac{1}{18} \int{ \frac{18\,x + 18}{9\,x^2 + 6\,x + 5} } \\ &= \frac{1}{18} \int{ \frac{18\,x + 6}{9\,x^2 + 6\,x + 5} + \frac{12}{9\,x^2 + 6\,x + 5} \,\mathrm{d}x } \end{align*}$

The first term can be integrated with substitution $\displaystyle \begin{align*} u = 9\,x^2 + 6\,x + 5 \implies \mathrm{d}x = \left( 18\,x + 6 \right) \,\mathrm{d}x \end{align*}$ and the second can be solved with your idea of completing the square in the denominator.
 
$\displaystyle \begin{align*} \frac{\mathrm{d}}{\mathrm{d}x}\,\left( 9\,x^2 + 6\,x + 5 \right) = 18\,x + 6 \end{align*}$

$\displaystyle \begin{align*} \int{ \frac{x + 1}{9\,x^2 + 6\,x + 5} \,\mathrm{d}x } &= \frac{1}{18} \int{ \frac{18\,x + 18}{9\,x^2 + 6\,x + 5} } \\ &= \frac{1}{18} \int{ \frac{18\,x + 6}{9\,x^2 + 6\,x + 5} + \frac{12}{9\,x^2 + 6\,x + 5} \,\mathrm{d}x } \end{align*}$

$\displaystyle \begin{align*} u = 9\,x^2 + 6\,x + 5 \implies \mathrm{d}x = \left( 18\,x + 6 \right) \,\mathrm{d}x \end{align*}$

$\displaystyle
\frac{1}{18} \int{\frac{18x + 6}{9\,x^2 + 6x + 5}} \, dx
= \frac{1}{18}\int\frac{1}{u}\, du =\frac{1}{18}\ln\left({9\,x^2 + 6x+5}\right)$
 
Last edited:
karush said:
$\displaystyle \begin{align*} \frac{\mathrm{d}}{\mathrm{d}x}\,\left( 9\,x^2 + 6\,x + 5 \right) = 18\,x + 6 \end{align*}$

$\displaystyle \begin{align*} \int{ \frac{x + 1}{9\,x^2 + 6\,x + 5} \,\mathrm{d}x } &= \frac{1}{18} \int{ \frac{18\,x + 18}{9\,x^2 + 6\,x + 5} } \\ &= \frac{1}{18} \int{ \frac{18\,x + 6}{9\,x^2 + 6\,x + 5} + \frac{12}{9\,x^2 + 6\,x + 5} \,\mathrm{d}x } \end{align*}$

$\displaystyle \begin{align*} u = 9\,x^2 + 6\,x + 5 \implies \mathrm{d}x = \left( 18\,x + 6 \right) \,\mathrm{d}x \end{align*}$

$\displaystyle
\frac{1}{18} \int{\frac{18x + 6}{9\,x^2 + 6x + 5}} \, dx
= \frac{1}{18}\int\frac{1}{u}\, du =\frac{1}{18}\ln\left({9\,x^2 + 6x+5}\right)$

That is correct so far. Notice you can leave out the absolute value signs in the logarithm as the quantity is always nonnegative anyway.

Now how about the second part?
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K