MHB S6.7.r.19 Rational Expression Integral (complete the square?)

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\Large{S6.7.R.19}$

$$\displaystyle
I=\int\frac{x+1}{9{x}^{2}+6x+5}\, dx
=\frac{1}{18}\ln\left({9{x}^{2}+6x+5}\right)
+\frac{1}{9}\arctan\left[{\frac{1}{2}\left(3x+1\right)}\right]+C
$$
$\text{from the given I thought completing the square would be the way to solve this} \\$
$\text{but I don't see how this would result in the answer.}$
 
Physics news on Phys.org
karush said:
$\Large{S6.7.R.19}$

$$\displaystyle
I=\int\frac{x+1}{9{x}^{2}+6x+5}\, dx
=\frac{1}{18}\ln\left({9{x}^{2}+6x+5}\right)
+\frac{1}{9}\arctan\left[{\frac{1}{2}\left(3x+1\right)}\right]+C
$$
$\text{from the given I thought completing the square would be the way to solve this} \\$
$\text{but I don't see how this would result in the answer.}$

I would start by rewriting it in two separate fractions, one where a u substitution can be used... Notice that $\displaystyle \begin{align*} \frac{\mathrm{d}}{\mathrm{d}x}\,\left( 9\,x^2 + 6\,x + 5 \right) = 18\,x + 6 \end{align*}$, so we should probably rewrite the integral as...

$\displaystyle \begin{align*} \int{ \frac{x + 1}{9\,x^2 + 6\,x + 5} \,\mathrm{d}x } &= \frac{1}{18} \int{ \frac{18\,x + 18}{9\,x^2 + 6\,x + 5} } \\ &= \frac{1}{18} \int{ \frac{18\,x + 6}{9\,x^2 + 6\,x + 5} + \frac{12}{9\,x^2 + 6\,x + 5} \,\mathrm{d}x } \end{align*}$

The first term can be integrated with substitution $\displaystyle \begin{align*} u = 9\,x^2 + 6\,x + 5 \implies \mathrm{d}x = \left( 18\,x + 6 \right) \,\mathrm{d}x \end{align*}$ and the second can be solved with your idea of completing the square in the denominator.
 
$\displaystyle \begin{align*} \frac{\mathrm{d}}{\mathrm{d}x}\,\left( 9\,x^2 + 6\,x + 5 \right) = 18\,x + 6 \end{align*}$

$\displaystyle \begin{align*} \int{ \frac{x + 1}{9\,x^2 + 6\,x + 5} \,\mathrm{d}x } &= \frac{1}{18} \int{ \frac{18\,x + 18}{9\,x^2 + 6\,x + 5} } \\ &= \frac{1}{18} \int{ \frac{18\,x + 6}{9\,x^2 + 6\,x + 5} + \frac{12}{9\,x^2 + 6\,x + 5} \,\mathrm{d}x } \end{align*}$

$\displaystyle \begin{align*} u = 9\,x^2 + 6\,x + 5 \implies \mathrm{d}x = \left( 18\,x + 6 \right) \,\mathrm{d}x \end{align*}$

$\displaystyle
\frac{1}{18} \int{\frac{18x + 6}{9\,x^2 + 6x + 5}} \, dx
= \frac{1}{18}\int\frac{1}{u}\, du =\frac{1}{18}\ln\left({9\,x^2 + 6x+5}\right)$
 
Last edited:
karush said:
$\displaystyle \begin{align*} \frac{\mathrm{d}}{\mathrm{d}x}\,\left( 9\,x^2 + 6\,x + 5 \right) = 18\,x + 6 \end{align*}$

$\displaystyle \begin{align*} \int{ \frac{x + 1}{9\,x^2 + 6\,x + 5} \,\mathrm{d}x } &= \frac{1}{18} \int{ \frac{18\,x + 18}{9\,x^2 + 6\,x + 5} } \\ &= \frac{1}{18} \int{ \frac{18\,x + 6}{9\,x^2 + 6\,x + 5} + \frac{12}{9\,x^2 + 6\,x + 5} \,\mathrm{d}x } \end{align*}$

$\displaystyle \begin{align*} u = 9\,x^2 + 6\,x + 5 \implies \mathrm{d}x = \left( 18\,x + 6 \right) \,\mathrm{d}x \end{align*}$

$\displaystyle
\frac{1}{18} \int{\frac{18x + 6}{9\,x^2 + 6x + 5}} \, dx
= \frac{1}{18}\int\frac{1}{u}\, du =\frac{1}{18}\ln\left({9\,x^2 + 6x+5}\right)$

That is correct so far. Notice you can leave out the absolute value signs in the logarithm as the quantity is always nonnegative anyway.

Now how about the second part?
 

Similar threads

Replies
3
Views
2K
Replies
6
Views
3K
Replies
6
Views
2K
Replies
7
Views
2K
Replies
3
Views
2K
Replies
7
Views
2K
Replies
6
Views
2K
Back
Top