S6.7.r.19 Rational Expression Integral (complete the square?)

Click For Summary
SUMMARY

The integral of the expression $\int\frac{x+1}{9{x}^{2}+6x+5}\, dx$ can be solved using a combination of u-substitution and completing the square. The final result is $\frac{1}{18}\ln\left({9{x}^{2}+6x+5}\right) + \frac{1}{9}\arctan\left[{\frac{1}{2}\left(3x+1\right)}\right]+C$. The discussion emphasizes the importance of rewriting the integral into two separate fractions to facilitate integration, particularly highlighting the derivative of the denominator, $9x^2 + 6x + 5$, which simplifies the process.

PREREQUISITES
  • Understanding of integral calculus, specifically integration techniques.
  • Familiarity with u-substitution in integrals.
  • Knowledge of completing the square for quadratic expressions.
  • Basic understanding of logarithmic and arctangent functions.
NEXT STEPS
  • Study the method of u-substitution in greater depth, focusing on its application in integrals.
  • Learn how to complete the square for various quadratic expressions.
  • Explore the properties and applications of logarithmic functions in calculus.
  • Investigate the integration of rational functions and techniques for simplifying them.
USEFUL FOR

Students and educators in calculus, mathematicians focusing on integral calculus, and anyone seeking to enhance their skills in solving rational expression integrals.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\Large{S6.7.R.19}$

$$\displaystyle
I=\int\frac{x+1}{9{x}^{2}+6x+5}\, dx
=\frac{1}{18}\ln\left({9{x}^{2}+6x+5}\right)
+\frac{1}{9}\arctan\left[{\frac{1}{2}\left(3x+1\right)}\right]+C
$$
$\text{from the given I thought completing the square would be the way to solve this} \\$
$\text{but I don't see how this would result in the answer.}$
 
Physics news on Phys.org
karush said:
$\Large{S6.7.R.19}$

$$\displaystyle
I=\int\frac{x+1}{9{x}^{2}+6x+5}\, dx
=\frac{1}{18}\ln\left({9{x}^{2}+6x+5}\right)
+\frac{1}{9}\arctan\left[{\frac{1}{2}\left(3x+1\right)}\right]+C
$$
$\text{from the given I thought completing the square would be the way to solve this} \\$
$\text{but I don't see how this would result in the answer.}$

I would start by rewriting it in two separate fractions, one where a u substitution can be used... Notice that $\displaystyle \begin{align*} \frac{\mathrm{d}}{\mathrm{d}x}\,\left( 9\,x^2 + 6\,x + 5 \right) = 18\,x + 6 \end{align*}$, so we should probably rewrite the integral as...

$\displaystyle \begin{align*} \int{ \frac{x + 1}{9\,x^2 + 6\,x + 5} \,\mathrm{d}x } &= \frac{1}{18} \int{ \frac{18\,x + 18}{9\,x^2 + 6\,x + 5} } \\ &= \frac{1}{18} \int{ \frac{18\,x + 6}{9\,x^2 + 6\,x + 5} + \frac{12}{9\,x^2 + 6\,x + 5} \,\mathrm{d}x } \end{align*}$

The first term can be integrated with substitution $\displaystyle \begin{align*} u = 9\,x^2 + 6\,x + 5 \implies \mathrm{d}x = \left( 18\,x + 6 \right) \,\mathrm{d}x \end{align*}$ and the second can be solved with your idea of completing the square in the denominator.
 
$\displaystyle \begin{align*} \frac{\mathrm{d}}{\mathrm{d}x}\,\left( 9\,x^2 + 6\,x + 5 \right) = 18\,x + 6 \end{align*}$

$\displaystyle \begin{align*} \int{ \frac{x + 1}{9\,x^2 + 6\,x + 5} \,\mathrm{d}x } &= \frac{1}{18} \int{ \frac{18\,x + 18}{9\,x^2 + 6\,x + 5} } \\ &= \frac{1}{18} \int{ \frac{18\,x + 6}{9\,x^2 + 6\,x + 5} + \frac{12}{9\,x^2 + 6\,x + 5} \,\mathrm{d}x } \end{align*}$

$\displaystyle \begin{align*} u = 9\,x^2 + 6\,x + 5 \implies \mathrm{d}x = \left( 18\,x + 6 \right) \,\mathrm{d}x \end{align*}$

$\displaystyle
\frac{1}{18} \int{\frac{18x + 6}{9\,x^2 + 6x + 5}} \, dx
= \frac{1}{18}\int\frac{1}{u}\, du =\frac{1}{18}\ln\left({9\,x^2 + 6x+5}\right)$
 
Last edited:
karush said:
$\displaystyle \begin{align*} \frac{\mathrm{d}}{\mathrm{d}x}\,\left( 9\,x^2 + 6\,x + 5 \right) = 18\,x + 6 \end{align*}$

$\displaystyle \begin{align*} \int{ \frac{x + 1}{9\,x^2 + 6\,x + 5} \,\mathrm{d}x } &= \frac{1}{18} \int{ \frac{18\,x + 18}{9\,x^2 + 6\,x + 5} } \\ &= \frac{1}{18} \int{ \frac{18\,x + 6}{9\,x^2 + 6\,x + 5} + \frac{12}{9\,x^2 + 6\,x + 5} \,\mathrm{d}x } \end{align*}$

$\displaystyle \begin{align*} u = 9\,x^2 + 6\,x + 5 \implies \mathrm{d}x = \left( 18\,x + 6 \right) \,\mathrm{d}x \end{align*}$

$\displaystyle
\frac{1}{18} \int{\frac{18x + 6}{9\,x^2 + 6x + 5}} \, dx
= \frac{1}{18}\int\frac{1}{u}\, du =\frac{1}{18}\ln\left({9\,x^2 + 6x+5}\right)$

That is correct so far. Notice you can leave out the absolute value signs in the logarithm as the quantity is always nonnegative anyway.

Now how about the second part?
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K