MHB Sammy's question at Yahoo Answers regarding approximate integration

Click For Summary
The discussion centers on approximating the integral of the function sqrt[2 - (sin x)^2] using the trapezoidal and Simpson's rules. The relationship between these methods is established with the equation 4T2n - Tn = 3Sn, demonstrating how the estimates relate to each other. Specific calculations for T1, T2, S1, and S2 yield approximate values of 1.0363, 1.0528, 1.0583, and 1.0581, respectively. These results show that Simpson's rule generally provides a more accurate estimate compared to the trapezoidal rule for this integral. The thread effectively illustrates the application of numerical integration techniques.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Trapezoidal rule and Simpson's rule question help :'(?

Note: any letter beside "T" and "S" is a subscript.
Three estimates of int[f(x)*dx] are as follows: Tn is obtained by using trapezoidal rule with (n+1) ordinates while T2n is obtained with (2n+1) ordinates, and Sn is obtained by using Simpson's rule with (2n+1) ordinates.

(a) Show that 4T2n - Tn =3Sn
(b) Evaluate T1, T2, S1 and S2 for the integral int{sqrt[2-(sin x)^2]*dx} (between 0 and pi/4)

I have posted a link there to this topic so the OP can see my work.
 
Mathematics news on Phys.org
Hello again sammy,

We will need the following:

Trapezoidal Rule:

$$T_n=\frac{b-a}{2n}\left(f\left(x_0 \right)+2f\left(x_1 \right)+\cdots+2f\left(x_{n-1} \right)+f\left(x_n \right) \right)$$

Simpson's Rule:

$$S_n=\frac{b-a}{3n}\left(f\left(x_0 \right)+4f\left(x_1 \right)+2f\left(x_2 \right)+\cdots+2f\left(x_{n-2} \right)+4f\left(x_{n-1} \right)+f\left(x_n \right) \right)$$

(a) Using these definitions, we may write:

$$4T_{2n}=\frac{b-a}{2n}\left(2f\left(x_0 \right)+4f\left(x_1 \right)+\cdots+4f\left(x_{2n-1} \right)+2f\left(x_{2n} \right) \right)$$

$$T_n=\frac{b-a}{2n}\left(f\left(x_0 \right)+2f\left(x_2 \right)+\cdots+2f\left(x_{2(n-1)} \right)+f\left(x_{2n} \right) \right)$$

Subtracting, we find:

$$4T_{2n}-T_{n}=\frac{b-a}{2n}\left(f\left(x_0 \right)+4f\left(x_1 \right)+2f\left(x_2 \right)+\cdots+2f\left(x_{2n-2} \right)+4f\left(x_{2n-1} \right)+f\left(x_{2n} \right) \right)$$

Hence:

$$4T_{2n}-T_{n}=\frac{b-a}{n}\left(f\left(x_0 \right)+4f\left(x_1 \right)+2f\left(x_2 \right)+\cdots+2f\left(x_{n-2} \right)+4f\left(x_{n-1} \right)+f\left(x_{n} \right) \right)$$

$$4T_{2n}-T_{n}=3S_{n}$$

(b) We are given to approximate:

$$\int_0^{\frac{\pi}{4}}\sqrt{2-\sin^2(x)}\,dx$$

For comparison, W|A returns:

$$\int_0^{\frac{\pi}{4}}\sqrt{2-\sin^2(x)}\,dx\approx1.058095501392563$$

$$T_1=\frac{\frac{\pi}{4}-0}{2\cdot1}\left(f\left(0 \right)+f\left(\frac{\pi}{4} \right) \right)=$$

$$\frac{\pi}{8}\left(\sqrt{2-\sin^2(0)}+\sqrt{2-\sin^2\left(\frac{\pi}{4} \right)} \right)=\frac{\pi}{8}\left(\sqrt{2}+\sqrt{\frac{3}{2}} \right)\approx1.0363165535804948$$

$$T_2=\frac{\frac{\pi}{4}-0}{2\cdot2}\left(f\left(0 \right)+2f\left(\frac{\pi}{8} \right)+f\left(\frac{\pi}{4} \right) \right)=$$

$$\frac{\pi}{16}\left(\sqrt{2-\sin^2(0)}+2\sqrt{2-\sin^2\left(\frac{\pi}{8} \right)}+\sqrt{2-\sin^2\left(\frac{\pi}{4} \right)} \right)\approx1.0527994926632949$$

$$S_1=\frac{\frac{\pi}{4}-0}{3\cdot2}\left(f\left(0 \right)+4f\left(\frac{\pi}{8} \right)+f\left(\frac{\pi}{4} \right) \right)=$$

$$\frac{\pi}{24}\left(\sqrt{2-\sin^2(0)}+4\sqrt{2-\sin^2\left(\frac{\pi}{8} \right)}+\sqrt{2-\sin^2\left(\frac{\pi}{4} \right)} \right)\approx1.0582938056908950$$

$$S_2=\frac{\frac{\pi}{4}-0}{3\cdot4}\left(f\left(0 \right)+4f\left(\frac{\pi}{16} \right)+2f\left(\frac{\pi}{8} \right)+4f\left(\frac{3\pi}{16} \right)+f\left(\frac{\pi}{4} \right) \right)=$$

$$\frac{\pi}{48}\left(\sqrt{2-\sin^2(0)}+4\sqrt{2-\sin^2\left(\frac{\pi}{16} \right)}+2\sqrt{2-\sin^2\left(\frac{\pi}{8} \right)}+4\sqrt{2-\sin^2\left(\frac{3\pi}{16} \right)}+\sqrt{2-\sin^2\left(\frac{\pi}{4} \right)} \right)\approx$$

$$1.0581079075268218$$

In summary:

$$T_1\approx1.0363165535804948$$

$$T_2\approx1.0527994926632949$$

$$S_1\approx1.0582938056908950$$

$$S_2\approx1.0581079075268218$$
 

Similar threads

Replies
1
Views
5K
  • · Replies 1 ·
Replies
1
Views
11K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
Replies
1
Views
8K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K