Sammy's question at Yahoo Answers regarding approximate integration

Click For Summary
SUMMARY

The discussion focuses on the application of the Trapezoidal Rule and Simpson's Rule for numerical integration, specifically evaluating the integral of the function √(2 - sin²(x)) from 0 to π/4. It establishes the relationship 4T2n - Tn = 3Sn, demonstrating that the two methods yield approximations T1 ≈ 1.0363, T2 ≈ 1.0528, S1 ≈ 1.0583, and S2 ≈ 1.0581 for the integral. The calculations utilize the definitions of Tn and Sn, confirming the accuracy of the approximations against the known value from Wolfram Alpha.

PREREQUISITES
  • Understanding of numerical integration techniques, specifically Trapezoidal Rule and Simpson's Rule.
  • Familiarity with calculus concepts, particularly definite integrals and function evaluation.
  • Basic knowledge of mathematical notation and subscripts in equations.
  • Ability to perform numerical approximations and error analysis.
NEXT STEPS
  • Study the derivation and applications of the Trapezoidal Rule in numerical analysis.
  • Learn about Simpson's Rule and its advantages over other numerical integration methods.
  • Explore error analysis techniques for numerical integration methods.
  • Investigate more complex integrals and their approximations using adaptive quadrature methods.
USEFUL FOR

Students, educators, and professionals in mathematics, engineering, and computer science who are involved in numerical analysis and integration techniques.

MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Trapezoidal rule and Simpson's rule question help :'(?

Note: any letter beside "T" and "S" is a subscript.
Three estimates of int[f(x)*dx] are as follows: Tn is obtained by using trapezoidal rule with (n+1) ordinates while T2n is obtained with (2n+1) ordinates, and Sn is obtained by using Simpson's rule with (2n+1) ordinates.

(a) Show that 4T2n - Tn =3Sn
(b) Evaluate T1, T2, S1 and S2 for the integral int{sqrt[2-(sin x)^2]*dx} (between 0 and pi/4)

I have posted a link there to this topic so the OP can see my work.
 
Physics news on Phys.org
Hello again sammy,

We will need the following:

Trapezoidal Rule:

$$T_n=\frac{b-a}{2n}\left(f\left(x_0 \right)+2f\left(x_1 \right)+\cdots+2f\left(x_{n-1} \right)+f\left(x_n \right) \right)$$

Simpson's Rule:

$$S_n=\frac{b-a}{3n}\left(f\left(x_0 \right)+4f\left(x_1 \right)+2f\left(x_2 \right)+\cdots+2f\left(x_{n-2} \right)+4f\left(x_{n-1} \right)+f\left(x_n \right) \right)$$

(a) Using these definitions, we may write:

$$4T_{2n}=\frac{b-a}{2n}\left(2f\left(x_0 \right)+4f\left(x_1 \right)+\cdots+4f\left(x_{2n-1} \right)+2f\left(x_{2n} \right) \right)$$

$$T_n=\frac{b-a}{2n}\left(f\left(x_0 \right)+2f\left(x_2 \right)+\cdots+2f\left(x_{2(n-1)} \right)+f\left(x_{2n} \right) \right)$$

Subtracting, we find:

$$4T_{2n}-T_{n}=\frac{b-a}{2n}\left(f\left(x_0 \right)+4f\left(x_1 \right)+2f\left(x_2 \right)+\cdots+2f\left(x_{2n-2} \right)+4f\left(x_{2n-1} \right)+f\left(x_{2n} \right) \right)$$

Hence:

$$4T_{2n}-T_{n}=\frac{b-a}{n}\left(f\left(x_0 \right)+4f\left(x_1 \right)+2f\left(x_2 \right)+\cdots+2f\left(x_{n-2} \right)+4f\left(x_{n-1} \right)+f\left(x_{n} \right) \right)$$

$$4T_{2n}-T_{n}=3S_{n}$$

(b) We are given to approximate:

$$\int_0^{\frac{\pi}{4}}\sqrt{2-\sin^2(x)}\,dx$$

For comparison, W|A returns:

$$\int_0^{\frac{\pi}{4}}\sqrt{2-\sin^2(x)}\,dx\approx1.058095501392563$$

$$T_1=\frac{\frac{\pi}{4}-0}{2\cdot1}\left(f\left(0 \right)+f\left(\frac{\pi}{4} \right) \right)=$$

$$\frac{\pi}{8}\left(\sqrt{2-\sin^2(0)}+\sqrt{2-\sin^2\left(\frac{\pi}{4} \right)} \right)=\frac{\pi}{8}\left(\sqrt{2}+\sqrt{\frac{3}{2}} \right)\approx1.0363165535804948$$

$$T_2=\frac{\frac{\pi}{4}-0}{2\cdot2}\left(f\left(0 \right)+2f\left(\frac{\pi}{8} \right)+f\left(\frac{\pi}{4} \right) \right)=$$

$$\frac{\pi}{16}\left(\sqrt{2-\sin^2(0)}+2\sqrt{2-\sin^2\left(\frac{\pi}{8} \right)}+\sqrt{2-\sin^2\left(\frac{\pi}{4} \right)} \right)\approx1.0527994926632949$$

$$S_1=\frac{\frac{\pi}{4}-0}{3\cdot2}\left(f\left(0 \right)+4f\left(\frac{\pi}{8} \right)+f\left(\frac{\pi}{4} \right) \right)=$$

$$\frac{\pi}{24}\left(\sqrt{2-\sin^2(0)}+4\sqrt{2-\sin^2\left(\frac{\pi}{8} \right)}+\sqrt{2-\sin^2\left(\frac{\pi}{4} \right)} \right)\approx1.0582938056908950$$

$$S_2=\frac{\frac{\pi}{4}-0}{3\cdot4}\left(f\left(0 \right)+4f\left(\frac{\pi}{16} \right)+2f\left(\frac{\pi}{8} \right)+4f\left(\frac{3\pi}{16} \right)+f\left(\frac{\pi}{4} \right) \right)=$$

$$\frac{\pi}{48}\left(\sqrt{2-\sin^2(0)}+4\sqrt{2-\sin^2\left(\frac{\pi}{16} \right)}+2\sqrt{2-\sin^2\left(\frac{\pi}{8} \right)}+4\sqrt{2-\sin^2\left(\frac{3\pi}{16} \right)}+\sqrt{2-\sin^2\left(\frac{\pi}{4} \right)} \right)\approx$$

$$1.0581079075268218$$

In summary:

$$T_1\approx1.0363165535804948$$

$$T_2\approx1.0527994926632949$$

$$S_1\approx1.0582938056908950$$

$$S_2\approx1.0581079075268218$$
 

Similar threads

Replies
1
Views
5K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
11K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
Replies
1
Views
8K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K