If we have two red balls and we are to choose one it is true that the probability measure of picking a red ball is 1. In this case it is understood that the sample space only contains a red ball and this is because events in the sample space are to be disjoint.(adsbygoogle = window.adsbygoogle || []).push({});

But how come this is not the case when we try to calculate the probability of picking a red ball out of a basket with 49 yellow balls and 1red ball.

If I write down the "sample space" such that the outcomes are disjoint I will only have 2 outcomes (namely the red and yellow ball) in which case the probability measure of picking a red or yellow is 0. 5. I got this from dividing the size of the event ( red) by the size sample space.

Ofcourse this is not the case because red and yellow balls are not equally likely. But by writing down the sample space such that outcomes are disjoint it appears as if red and yellow are equally likely.

What is the reason or flaw in my reasoning? Do you we only use the formula sizeof(event)/sizeof(sample space) when the sample space is understood ?

**Physics Forums - The Fusion of Science and Community**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Sample space and probability measure.

Loading...

Similar Threads for Sample space probability | Date |
---|---|

Multivariable sample space | May 20, 2015 |

Is the sample space not a set under ZFL? | Jul 17, 2014 |

Sigma Algebra on Omega (Sample Space) | Oct 22, 2013 |

Sample spaces having equally likely outcomes | Mar 16, 2013 |

Dependencies between two probability sample spaces OmegaA, OmegaB | Nov 12, 2011 |

**Physics Forums - The Fusion of Science and Community**