MHB Sarah Morash's question at Yahoo Answers about eigenvalues

  • Thread starter Thread starter Fernando Revilla
  • Start date Start date
  • Tags Tags
    Eigenvalues
Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
Here is the question:

ey! So I have a question on an assignment asking to orthogonally diagonalize the matrix:
a 0 b
0 a 0
b 0 a
I know the steps on how to do this, but am having a hard time trying to figure out how to factor this correctly to get all of the eigenvalues at the beginning. I can factor it to a point, but then cannot seem to figure out how to solve for the eigenvalues.

If anyone could help, that would be great!

Here is a link to the question:

Help finding the eigenvalues of a matrix? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hello Sarah,

Denote by A to the given matrix. Let's find the corresponding eigenvalues.

\det (A-\lambda I)=\begin{vmatrix}{a-\lambda}&{0}&{b}\\{0}&{a-\lambda}&{0}\\{b}&{0}&{a-\lambda}\end{vmatrix}=(a-\lambda)\begin{vmatrix}{a-\lambda}&{b}\\{b}&{a-\lambda}\end{vmatrix}

Now we use the transformations: F_2\to F_2-F_1 and C_1\to C_1+C_2:

\begin{vmatrix}{a-\lambda}&amp;{b}\\{b}&amp;{a-\lambda}\end{vmatrix}=\begin{vmatrix}{a-\lambda}&amp;{b}\\{b-a+\lambda}&amp;{a-b-\lambda}\end{vmatrix}=\begin{vmatrix}{a+b-\lambda}&amp;{b}\\{0}&amp;{a-b-\lambda}\end{vmatrix}<br />

As a consequence:

\det (A-\lambda I)=(a-\lambda)(a+b-\lambda)(a-b-\lambda)

and the eigenvalues are

\lambda_1=a,\lambda_2=a+b,\lambda_3=a-b
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top