MHB Scalar Triple Product and Coplanarity

Click For Summary
The discussion focuses on the scalar triple product and its relation to coplanarity. It emphasizes the importance of understanding cross and dot products, providing a specific example with vectors v and w. The cross product is calculated using a determinant, resulting in the vector 5i - j - 7k. The next step involves taking the dot product of this result with another vector u. Understanding these operations is crucial for solving problems related to vector coplanarity.
brinlin
Messages
12
Reaction score
0
Pre6.PNG
 
Mathematics news on Phys.org
Welcome to the forum. Before we go into the discussion of your particular question, please read the https://mathhelpboards.com/help/forum_rules/, especially "Show the nature of your question in your thread title" and "Show some effort". In this case, you should probably explain what exactly is not clear to you.
 
Do you not know how to do a cross product and a dot product?

With v= <2, 3, 1> and w= <3, 1, 2> the cross product, v x w, can be calculated as the determinant
$\left|\begin{array}{ccc}\vec{i} & \vec{j} & \vec{k} \\ 2 & 3 & 1 \\ 3 & 1 & 2 \end{array}\right|= \vec{i}\left|\begin{array}{cc}3 & 1 \\ 1 & 2\end{array}\right|- \vec{j}\left|\begin{array}{cc}2 & 1 \\ 3 & 2\end{array}\right|+ \vec{k}\left|\begin{array}{cc} 2 & 3 \\ 3 & 1 \end{array}\right|$
$= (6- 1)\vec{i}- (4- 3)\vec{j}+ (2- 9)\vec{k}= 5\vec{i}- \vec{j}- 7\vec{k}$

Now take the dot product of that with $u= \vec{i}+ 2\vec{j}+ 3\vec{k}$.
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
9
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
3
Views
3K