MHB Scalar Triple Product and Coplanarity

Click For Summary
The discussion focuses on the scalar triple product and its relation to coplanarity. It emphasizes the importance of understanding cross and dot products, providing a specific example with vectors v and w. The cross product is calculated using a determinant, resulting in the vector 5i - j - 7k. The next step involves taking the dot product of this result with another vector u. Understanding these operations is crucial for solving problems related to vector coplanarity.
brinlin
Messages
12
Reaction score
0
Pre6.PNG
 
Mathematics news on Phys.org
Welcome to the forum. Before we go into the discussion of your particular question, please read the https://mathhelpboards.com/help/forum_rules/, especially "Show the nature of your question in your thread title" and "Show some effort". In this case, you should probably explain what exactly is not clear to you.
 
Do you not know how to do a cross product and a dot product?

With v= <2, 3, 1> and w= <3, 1, 2> the cross product, v x w, can be calculated as the determinant
$\left|\begin{array}{ccc}\vec{i} & \vec{j} & \vec{k} \\ 2 & 3 & 1 \\ 3 & 1 & 2 \end{array}\right|= \vec{i}\left|\begin{array}{cc}3 & 1 \\ 1 & 2\end{array}\right|- \vec{j}\left|\begin{array}{cc}2 & 1 \\ 3 & 2\end{array}\right|+ \vec{k}\left|\begin{array}{cc} 2 & 3 \\ 3 & 1 \end{array}\right|$
$= (6- 1)\vec{i}- (4- 3)\vec{j}+ (2- 9)\vec{k}= 5\vec{i}- \vec{j}- 7\vec{k}$

Now take the dot product of that with $u= \vec{i}+ 2\vec{j}+ 3\vec{k}$.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...