MHB Scalar Triple Product and Coplanarity

brinlin
Messages
12
Reaction score
0
Pre6.PNG
 
Mathematics news on Phys.org
Welcome to the forum. Before we go into the discussion of your particular question, please read the https://mathhelpboards.com/help/forum_rules/, especially "Show the nature of your question in your thread title" and "Show some effort". In this case, you should probably explain what exactly is not clear to you.
 
Do you not know how to do a cross product and a dot product?

With v= <2, 3, 1> and w= <3, 1, 2> the cross product, v x w, can be calculated as the determinant
$\left|\begin{array}{ccc}\vec{i} & \vec{j} & \vec{k} \\ 2 & 3 & 1 \\ 3 & 1 & 2 \end{array}\right|= \vec{i}\left|\begin{array}{cc}3 & 1 \\ 1 & 2\end{array}\right|- \vec{j}\left|\begin{array}{cc}2 & 1 \\ 3 & 2\end{array}\right|+ \vec{k}\left|\begin{array}{cc} 2 & 3 \\ 3 & 1 \end{array}\right|$
$= (6- 1)\vec{i}- (4- 3)\vec{j}+ (2- 9)\vec{k}= 5\vec{i}- \vec{j}- 7\vec{k}$

Now take the dot product of that with $u= \vec{i}+ 2\vec{j}+ 3\vec{k}$.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
2
Views
3K
Replies
4
Views
3K
Replies
10
Views
2K
Replies
12
Views
2K
Replies
4
Views
3K
Back
Top