Scattered State Solutions of a Repulsive Dirac Delta Potential

PhysicsTruth
Messages
117
Reaction score
18
Homework Statement
For a repulsive Dirac delta potential V = a##\delta##(x), find the scattered state solutions.
Relevant Equations
##\beta## = ##\frac{4\pi^{2}m\alpha}{h^{2}k}##
##k^{2}## = ##\frac{8\pi^{2}mE}{h^2}##
I feel that this problem can be directly answered from the E>0 case of the attractive Dirac delta potential -a##\delta##(x), with the same reflection and transmission coefficients. Can someone confirm this hunch of mine?
 
Physics news on Phys.org
Yes, your hunch is correct. The attractive Dirac delta potential -a##\delta##(x) is a special case of the more general problem of an attractive delta potential V(x). The reflection and transmission coefficients for the attractive Dirac delta potential -a##\delta##(x) are the same as those for the more general case of an attractive delta potential V(x).
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top