How Do I Solve These Scattering Cross Section Problems?

Click For Summary
SUMMARY

The discussion focuses on solving scattering cross-section problems using specific equations and relationships. The user presents equations for differential cross-section, solid angle, and scattering amplitude, including $$d\sigma$$, $$d\Omega$$, and $$f(\theta)$$. A critical correction was identified regarding the expression for $$\frac{d\sigma}{d\Omega}$$, which should include the term $$\alpha$$. The user seeks guidance on how to proceed with the calculations, particularly for parts b) and c) of their problem set.

PREREQUISITES
  • Understanding of scattering theory and cross-section calculations
  • Familiarity with spherical harmonics, specifically $$Y_{l0}$$
  • Knowledge of differential equations and integrals in physics
  • Proficiency in mathematical notation used in quantum mechanics
NEXT STEPS
  • Study the derivation of scattering amplitudes in quantum mechanics
  • Learn about the role of spherical harmonics in scattering problems
  • Explore the implications of the correction in $$\frac{d\sigma}{d\Omega}$$ on calculations
  • Investigate methods for evaluating infinite summations in scattering theory
USEFUL FOR

Students and researchers in physics, particularly those specializing in quantum mechanics and scattering theory, will benefit from this discussion. It is also relevant for anyone working on problems involving differential cross-sections and scattering amplitudes.

Diracobama2181
Messages
70
Reaction score
3
Homework Statement
Suppose I am given the scattering cross section $$\sigma(\theta)=\alpha+\beta cos(\theta)+\gamma cos^2(theta)$$

a) Find the scattering amplitude.
b) Express α, β and γ in terms of the phase shifts δl
(c) Are there any constraints on the magnitudes of α, β and γ if the
scattering amplitude is not allowed to grow any faster than ln E as the
energy E becomes very large?
(d) Deduce the total scattering cross-section and show that it is consistent with the optical theorem.
Relevant Equations
$$\frac{d\sigma}{d \Omega}=|f(\theta)|^2$$
$$\sigma=\frac{4 \pi}{k}\sum_{l=0}^{\infty}(2l+1)sin^2(\delta_{l})$$
a) I have $$d\sigma=-\beta sin(\theta)d(\theta)+2\gamma sin(\theta)cos(\theta) d\theta$$
and $$d \Omega=2\pi sin(\theta) d \theta$$
so $$\frac{d\sigma}{d \Omega}=-\frac{\beta}{2\pi}+2\gamma cos(\theta)=|f(\theta)|^2$$

b) $$\sigma(\theta)=\alpha+\beta cos(\theta)+\gamma cos^2(theta)=\sigma=\frac{4 \pi}{k}\sum_{l=0}^{\infty}(2l+1)sin^2(\delta_{l})$$
Stuck here. Not sure if this is sufficient.

c) Also having issues with this one and deciding how to tackle it.

d) Waiting on doing this one until I can finish the previous two parts.

Has my setup so far been fine and are there any tips or suggestions on how I should tackle these problems?
Thanks in advance.
 
Physics news on Phys.org
I googled the topic, (my expertise here is limited), and I think you are needing the equation ## f(\theta)=\frac{1}{2 i k} \sum (2l+1) (e^{2 i \delta_l}-1)P_l(\cos{\theta}) ##. You can then set like powers of ## \cos{\theta} ## equal.
 
Last edited:
So, I talked with my professor, and apparently, there was a typo. It should be that $$\frac{d\sigma}{d\Omega}=\alpha+\beta cos(\theta)+\gamma cos^2(\theta)$$.
 
Charles Link said:
I googled the topic, (my expertise here is limited), and I think you are needing the equation ## f(\theta)=\frac{1}{2 i k} \sum (2l+1) (e^{2 i \delta_l}-1)P_l(\cos{\theta}) ##. You can then set like powers of ## \cos{\theta} ## equal.
I considered that, but I don't think that method would quite work since l is a summation to infinity.
 
Using this new info, I get for a) that ## f(\theta)=\frac{\sqrt{4\pi}}{k} \sum_{l=0}^{\infty} \sqrt{2l+1}Y_{l0} (e^{i\delta _l})sin^2{\delta_l} ##, where $$Y_{l0}$$ is a spherical harmonic.
For B, I can use $$\sigma=\int |f(\theta)|^2d\Omega=2\pi \int_{0}^{\pi}(\alpha+\beta cos(\theta)+\gamma cos^2(\theta))sin(\theta)d\Omega=4\pi\alpha+\frac{4\pi}{3}\gamma=\frac{4 \pi}{k}\sum_{l=0}^{\infty}(2l+1)sin^2(\delta_{l})$$.
However, this gets rid of $$\beta$$. Also, still not sure where to go for C).
 
I don't understand how to do this. I believe you need to be given the scattering amplitude f(θ) explicitly to enable the rest of the problem. Perhaps that is the intent??
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
16
Views
2K
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K