I Schrodinger Equation as Flow Equation

Click For Summary
The discussion explores the interpretation of the Schrödinger equation as a flow equation, highlighting its formulation with the wavefunction expressed as ψ = A e^{i θ}. It emphasizes that the equation can be rewritten to show the wavefunction's flow, with specific definitions for velocity and energy. References to works by Wyld, Baym, and Feynman illustrate historical perspectives on this interpretation, noting the distinction between quantum flow and classical diffusion. Additionally, the conversation mentions Madelung's hydrodynamic variables and their significance in various interpretations of quantum mechanics, including de Broglie-Bohm theory and Caticha's entropic dynamics. This interpretation enriches the understanding of quantum behavior through a flow-like perspective.
lagrangman
Messages
13
Reaction score
2
I was playing with the Schrodinger equation and realized that it can be interpreted as a flow equation.

If we set $$ \psi = A e^{i \theta} $$

We can put the Schrodinger in the form ∂ψ∂t=(−∇ψ)⋅v+iEψ

If v=ℏθm and E=ℏ2m(−∇2AA+∇2θ)+ρV

I find this intuitive personally as it shows that the wavefunction flows. Is there any book that mentions this?
 

Attachments

  • Thoughts.PNG
    Thoughts.PNG
    37.2 KB · Views: 203
Last edited:
Physics news on Phys.org
lagrangman said:
I was playing with the Schrodinger equation and realized that it can be interpreted as a flow equation.

If we set $$ \psi = A e^{i \theta} $$

We can put the Schrodinger in the form ∂ψ∂t=(−∇ψ)⋅v+iEψ

If v=ℏθm and E=ℏ2m(−∇2AA+∇2θ)+ρV

I find this intuitive personally as it shows that the wavefunction flows. Is there any book that mentions this?
In my Mathematical Methods for Physics book by Wyld from 1976 it was referred to as a diffusion equation with an imaginary diffusion constant. Baym (1969) mentioned it in his Lectures on Quantum Mechanics assuming that is what you meant by a flow equation.

In his Lectures on Physics (Volume 3, chapter 16, section 1) Feynman speaking of the Schrödinger equation says;

In fact, the equation looks something like the diffusion equations which we have used in Volume I. But there is one main difference: the imaginary coefficient in front of the time derivative makes the behavior completely different from the ordinary diffusion such as you would have for a gas spreading out along a thin tube. Ordinary diffusion gives rise to real exponential solutions, whereas the solutions of Eq. (16.13) are complex waves.
 
Last edited:
  • Like
Likes vanhees71, PeterDonis and Delta2
lagrangman said:
I was playing with the Schrodinger equation and realized that it can be interpreted as a flow equation.
There is a more important presentation of the Schrödinger equation as a flow equation which goes back to Madelung. His variables are often misleadingly named "hydrodynamic variables". For the probability distribution in the configuration space ##\rho(q,t) = |\psi(q,t)|^2## the Schrödinger equation gives a probability flow equation
$$\partial_t \rho + \partial_i \left(\rho v^i\right) = 0.$$

The velocity is defined by the phase ##\phi(q) = \hbar \Im \ln \psi(q)## by ##m v^i(q,t)=\partial_i \phi(q,t) ##
The Schrödinger equation gives also a quantum generalization of the Hamilton-Jacobi equation:

$$\partial_t \phi + \frac{1}{2} (\nabla \phi)^2 + V -\frac{\hbar^2}{2} \frac{\Delta \sqrt{\rho}}{\sqrt{\rho}} = 0.$$

These variables are used in almost all realistic interpretations of quantum theory, in particular in de Brogllie-Bohm theory (also known as Bohmian mechanics), in Nelsonian stochastics, and (my favorite) Caticha's entropic dynamics. For the discussion of those interpretations there is a separate subforum.
 
  • Like
Likes dextercioby
For the quantum state ##|l,m\rangle= |2,0\rangle## the z-component of angular momentum is zero and ##|L^2|=6 \hbar^2##. According to uncertainty it is impossible to determine the values of ##L_x, L_y, L_z## simultaneously. However, we know that ##L_x## and ## L_y##, like ##L_z##, get the values ##(-2,-1,0,1,2) \hbar##. In other words, for the state ##|2,0\rangle## we have ##\vec{L}=(L_x, L_y,0)## with ##L_x## and ## L_y## one of the values ##(-2,-1,0,1,2) \hbar##. But none of these...

Similar threads

  • · Replies 39 ·
2
Replies
39
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 32 ·
2
Replies
32
Views
2K
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 143 ·
5
Replies
143
Views
11K
  • · Replies 11 ·
Replies
11
Views
2K