As an approximation for analyzing particular experiments, this can work ok--basically you are ignoring all the other degrees of freedom of the particular system (buckyball, silver atom in an S-G experiment, etc.) because you have set up the experiment so those degrees of freedom, to a good enough approximation, do not affect the outcome.
However, if we're talking about a thought experiment like Schrodinger's cat, we're not talking about experimental approximations, we're talking about foundations of QM. And as far as foundations of QM are concerned, a buckyball is not a qubit, nor is a silver atom. For foundational purposes you simply can't ignore all the additional complexity. I thought we had agreed that that was part of Schrodinger's point.