mhill
- 180
- 1
Given the path integral
< -\infty | \infty > = N \int D[\phi ]e^{i \int dx (L+J \phi ) }
then , it would be true that (Schwinger)
\frac{\partial < -\infty | \infty >}{\partial J }= < -\infty |\delta \int L d^{4}x | \infty >
If so, could someone provide an exmple with the Kelin-gordon scalar field plus an interaction of the form \phi ^{4}
< -\infty | \infty > = N \int D[\phi ]e^{i \int dx (L+J \phi ) }
then , it would be true that (Schwinger)
\frac{\partial < -\infty | \infty >}{\partial J }= < -\infty |\delta \int L d^{4}x | \infty >
If so, could someone provide an exmple with the Kelin-gordon scalar field plus an interaction of the form \phi ^{4}