Hi. I have 2 questions about second-order coherence – g2(t):(adsbygoogle = window.adsbygoogle || []).push({});

1) For collision-broadened light according to the literature g2(t)=1+|g1(t)|^2, where g1(t) is the 1st order coherence. Therefore for very low collision rate g1(t) =1 and thus g2(t)=2. However I would expect collision broadened light to reach a costant phase limit of CW for low collision rate and thus g2(t)=1. What did I miss here?

2) In a light emitting diode – LED there should be many different scattering mechanisms for the radiating carriers and thus it should behave as a collision-broadened light g2(0)=2 with super-poissonian photon statistics. On the other hand the literature about LEDs talks about poissonian and even sub-poissonian photon statistics dependent only on the electron current and ignoring the scattering. Does anyone have a simple explanation of what should LED’s g2(t) look like and why?

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Second-order coherence – g2(t) of collision-broadened light and LEDs

**Physics Forums | Science Articles, Homework Help, Discussion**