harrylin said:
How else? Proper time is a measure for the progress of a physical process - in the case of an ideal clock it can simply be the clock readout. That has as little to do with a frame as the temperature readout of a thermometer, or the color of your shirt. But of course any of those can be used for defining a frame.
And what does all that have to do with the second postulate?
Temperature is another very good example for the importance of reference frames. That it is a scalar (field) is due to a careful convention, which is not that old in the history of relativity. I can't point the finger to one single paper, where a paradigm change occured, but you can google-scholar for it. You get tons of papers about the transformation properties of the thermodynamic quantities. If you read older papers and textbooks on relativity by Planck, von Laue et al (with no doubt people who completely understood relativity from the moment of Einstein's paper of 1905) the temperature is defined as a quantity that transforms with a Lorentz-##\gamma## factor when changing from one inertial frame to another (note that I talk about SR only here). Within SR there is no trouble with this, and all the thermodynamics and statistical mechanics is consistent with such a definition, but it's very inconvenient, particularly when it comes to GR (and I wouldn't like to work with the old convention in my own research on heavy-ion collisions, which is complete within SR, either).
The modern definition of temperature (which, I think goes back to people like van Kampen, Israel, Stuart in the 1960ies) in the relativistic realm is very clearly using a reference frame preferred by the physical situation: Temperature makes sense in local thermal equilibrium of a substance (say a fluid like a liquid or gas). Local thermal equilibrium defines local rest frames of the fluid. This is a macroscopic quantity, i.e., (in any inertial frame you like) you put a spatial and temporal grid on spacetime which is coarse enough such that in each so defined "fluid cell" are many particles but also fine enough that each fluid cell is small against the typical time and lengths scales over which the macroscopic fluid properties change (you need such a separation of microscopic and macroscopic scales to make sense of a local thermal equilibrium (aka ideal hydro) description of the medium). Then the temperature is defined as the reading of an ideal thermometer at rest in the local rest frame of each fluid cell, defining the scalar temperature field.
In statistics and kinetics you also have to take care of the convenient definition of the phase-space distribution function in terms of a scalar field ##f(t,\vec{x},\vec{p})## for classical on-shell particles (I don't go into the even more complicated issue of the proper derivation from many-body quantum field theory). For local thermal equibrium the upshot is that for an ideal gas the classical phase-space distribution function is defined as the scalar quantity (Boltzmann-Jüttner distribution function)
$$f(t,\vec{x},\vec{p}) = \frac{1}{(2 \pi \hbar)^3} \exp\left [-\frac{u(x) \cdot p-\mu(x)}{T(x)} \right ], \quad p^0=E_{\vec{p}}=\sqrt{m^2+\vec{p}^2}.$$
Taking into account quantum statistics, instead of the exponential function you have Bose or Fermi distributions. Temperature and chemical-potential field (the latter referring to some conserved charge-like quantity like net-baryon number or electric charge) are scalar field, and ##u## is the four-velocity of the fluid flow.
A very illuminating paper about all this is
Fred Cooper and Graham Frye. Single-particle distribution in the hydrodynamic and statistical thermodynamic models of multiparticle production. Phys. Rev. D, 10:186, 1974.
http://dx.doi.org/10.1103/PhysRevD.10.186