B Self-descriptive Physical Object

  • Thread starter Thread starter DaveC426913
  • Start date Start date
  • Tags Tags
    Physical
Click For Summary
The discussion centers on the concept of self-descriptive physical objects, particularly in the context of 3D printing. It explores the idea of embedding instructions within an object to facilitate its recreation without relying on external files. The complexity of these instructions increases significantly as they must account for the object's features and the method of inscription. Participants debate the feasibility of creating concise representations and the implications of support systems in the reproduction process. Ultimately, the conversation raises questions about the nature of instructions and the assumptions necessary for accurate object replication.
  • #31
DaveC426913 said:
That's true, but describing he description does.
No it doesn't. You do rely on "write the letters that you read", but reading letters is okay as you said, and how to write the letters can be described as detailed as you want.
 
Mathematics news on Phys.org
  • #32
This seems like a question of accuracy in reverse engineering. The result of the experiment depends on your accuracy of measurement as well as the ability to reproduce the product at a specific accuracy. Both of these have limits, but it shouldn't be a problem if everything is not quatum-scale, at least technically.
 
  • #33
valenumr said:
This seems like a question of accuracy in reverse engineering. The result of the experiment depends on your accuracy of measurement as well as the ability to reproduce the product at a specific accuracy. Both of these have limits, but it shouldn't be a problem if everything is not quatum-scale, at least technically.
That's not the challenge as-stated, no.

See paragraphs 4 and 5 of the OP:
Now, I know what you're thinking "The object already contains a description of itself - in its own measurements! Just measure every relevant coordinate."

Well, that would be an analogue description, and it's pretty prone to error. The description of the object would suffer from measurement error, and that would be compounded each time.
The thought experiment is that reverse engineering the object is cheating.
 
Last edited:
  • #34
DaveC426913 said:
That's not the challenge as-stated, no.

See paragraphs 4 and 5 of the OP:

The thought experiment is that reverse engineering the object is cheating.
I understood, but I guess what I mean is, it seems the ability to accomplish such a task is only limited by ones ability to describe an object (or measure it) and ability to reproduce such specifications accurately. If we could do such things perfectly, perhaps we would have star trek level transporters.

I suppose your argument relating to information theory, or information encoding is more on topic, but I think the point is relevant.
 

Similar threads

Replies
35
Views
4K
  • · Replies 58 ·
2
Replies
58
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
Replies
12
Views
2K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 28 ·
Replies
28
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K