Undergrad When is it preferable to use semi-log and log-log graphs?

  • Thread starter Thread starter fog37
  • Start date Start date
  • Tags Tags
    Graphs
Click For Summary
Using semi-log graphs is preferable when the y variable has a significantly larger or smaller range than the x variable, allowing for clearer visualization of data by plotting log(y) against x. This approach compresses the y-values, making it easier to interpret exponential relationships, especially when the data spans several orders of magnitude. In contrast, log-log graphs are beneficial when both x and y data pairs vary widely, providing a linear representation of power-law relationships. The discussion emphasizes that different scales on the axes can distort the representation of data, particularly for exponential functions. Ultimately, selecting the appropriate graph type enhances clarity and understanding of the underlying data relationships.
fog37
Messages
1,566
Reaction score
108
Hello,
Given two sets of data, ##x## and ##y##, let's assume that the variable ##y## has a range of values that is much larger (or much smaller) than the range of ##x##.
It becomes then preferable to convert the ##y## variable's values to its logarithmic value and obtain a semi-log graph by plotting ##log(y)## vs ##x##. But why don't we simply plot the actual values of the variable ##y## with the distance between the marks on the y-axis representing a large value? The mark distance on the y and x axes does not have to be the same since the ##x## and ##y## variables can indicate different physical quantities...

Also, there seems to be no problem graphing an exponential function ##y=e^{x}##.

And when would a log-log graph be useful?

Thanks!
 
Mathematics news on Phys.org
When your x,y data pairs range from very small to very large then a log-log graph makes sense.
 
fog37 said:
It becomes then preferable to convert the y variable's values to its logarithmic value and obtain a semi-log graph by plotting log(y) vs x. But why don't we simply plot the actual values of the variable y with the distance between the marks on the y-axis representing a large value? The mark distance on the y and x axes does not have to be the same since the x and y variables can indicate different physical quantities...
Sure, you can use a different scale on the x- and y-axes. The thing is that for an exponential function, a small change in x can produce a wildly varying change in y, depending on the value of x.

Here's a table of a few values for ##y = 10^x##
Code:
x     y
0     1
1     10
2     100
3     1000
4     10000
If the scale on the y-axis is 1000 per scale mark, you lose detail for the smaller values of x, and your graph quickly runs out of room for the larger x values.
OTOH, if you use a log scale on the vertical axis, you are essentially compressing the y-values, and the graph becomes a straight line. This is also another advantage of plotting x vs ##\log(x)##, especially if you just have data and don't know the underlying function -- if you end up with a graph that is linear, you know that the relationship between x and y is exponential.
 
Last edited:
  • Like
Likes jedishrfu
Thanks for the example, Mark44.

So, if the y-axis marks were located at y=0, y=1000, y=2000, y=3000, etc. the graph would look perfectly ok for values of ##x>3##. However for ##x>>3##, the y-variables would assume values so large that the y-marks distance of 1000 would be too small and we would run out of space...

For ##x<3##, the smaller y values would get all bunched up and the graph look strange...
 
fog37 said:
Thanks for the example, Mark44.

So, if the y-axis marks were located at y=0, y=1000, y=2000, y=3000, etc. the graph would look perfectly ok for values of ##x>3##. However for ##x>>3##, the y-variables would assume values so large that the y-marks distance of 1000 would be too small and we would run out of space...

For ##x<3##, the smaller y values would get all bunched up and the graph look strange...
Yes, that's exactly it.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 10 ·
Replies
10
Views
10K
  • · Replies 2 ·
Replies
2
Views
12K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 9 ·
Replies
9
Views
381
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
4
Views
2K