Semiclassical descriptions of atom-light interaction

  • Thread starter Niles
  • Start date
  • #1
1,868
0
Hi

Say I want to describe the interaction between a free atom atom and a classical EM field. The full Hamiltonian for the problem must be
[tex]
H = (H_0 + p^2/2m) + (H_V + H_E) + H_D
[/tex]
where H0 denotes the internal levels of the atom, HV the vacuum field, HE the energy density of the classical field and HD the dipole interaction.

My question is regarding HE. I have never seen it written explicitly and have not been able to find a reference where they do so. How would one write this? Is it QM-version of something similar to Poyntings vector?

Best regards,
Niles.
 

Answers and Replies

  • #2
f95toli
Science Advisor
Gold Member
3,053
550
The Hamiltonian for a classical drive is something along the line of

[tex]
E(e^{-i\omega t}a^\dagger+e^{i \omega t} a)
[/tex]

I would suggest you look up some info about the driven Jaynes-Cummings model
 
Last edited:
  • #3
Bill_K
Science Advisor
Insights Author
4,155
195
The usual form for the classical Hamiltonian for the electromagnetic field is the energy density, H = ½(E2 + B2). The easiest way to get to the quantum form is to use the radiation gauge, Φ = 0 and ∇·A = 0, allowing H to be written in terms of the vector potential as H = ½((A·)2 + (∇ x A)2).

Now Fourier transform, A = ∫d3k/√(2ω) ∑ε(k)[a(k)e-ik·x + a*eik·x], where ε(k) are polarization vectors. In terms of a(k) the Hamiltonian reduces to H = ∫d3k ω ∑a*(k)a(k). This is still classical.

Quantum mechanics comes in when you now say that a*(k)a(k) = ħ N(k) where N(k) is the number operator.
 
  • #4
1,868
0
Ah, I see. Thanks for taking the time to explain that. I will study your reply in depth.

Best wishes,
Niles.
 

Related Threads on Semiclassical descriptions of atom-light interaction

  • Last Post
Replies
9
Views
542
Replies
7
Views
655
Replies
1
Views
685
  • Last Post
Replies
4
Views
2K
Replies
1
Views
916
Replies
10
Views
2K
  • Last Post
Replies
1
Views
2K
  • Last Post
Replies
3
Views
694
  • Last Post
Replies
2
Views
3K
Replies
9
Views
303
Top