Semiconductor -- Conduction and Valence bands

AI Thread Summary
Silicon atoms form energy bands due to the Pauli exclusion principle, creating a valence band and a conduction band with an energy gap. When sufficient energy is applied, electrons can move from the valence band to the conduction band, but the 0.7V mentioned relates to diode behavior rather than direct conduction energy. The application of a potential difference causes electrons to flow towards the positive electrode while holes move towards the negative electrode, facilitating current flow. The movement of holes contributes to overall conductivity, and electrons left in the valence band remain in their energy states until excited again. Understanding these concepts is crucial for grasping semiconductor behavior.
pj33
Messages
23
Reaction score
3
TL;DR Summary
How does a semiconductor conducts
I am a new to this and I try to understand the basics.
So initially once the atoms of silicon come together to form a solid, due to Pauli law no electrons can exist in the same energy state,thus many energy states are formed which together make the bands.

My problem starts at this stage where I try to understand the conduction in macro and micro state.
1) In the silicon the valence and conduction band have some energy difference, but once there is some energy input, the electrons get excited if there is sufficient energy, then they move to the conduction band (does this energy correspodn to the 0.7V required by the semiconductors such as diodes, to conduct?)
2) Can someone explain me the electron motion once the potential difference is applied ( I was shown a picture same as the first picture here https://ecee.colorado.edu/~bart/book/eband4.htm). I was told that the electrons roll down because there available energy levels, but I can't see how this work.
3) Then, once the potential difference is applied the electrons move towards the positive electrode thus current flow and the holes flow towards the negative electrode (does the flow of holes cause anything?)
4) What happens to the electrons left in the valence band?

Thank you in advance!
 
Engineering news on Phys.org
pj33 said:
Summary:: How does a semiconductor conducts

I think you should reference Chenming Hu's excellent & free semiconductor textbook.

For 1: You're close but your terminology is wrong. Read section 1.3 very closely. The 0.7V is something else. You cover it when you review PN junctions.
https://www.chu.berkeley.edu/wp-content/uploads/2020/01/Chenming-Hu_ch1-3.pdf

For 2 to 4: Chapter 2 of has an excellent description of drift. I think especially section 2.2 will help you.
https://www.chu.berkeley.edu/wp-content/uploads/2020/01/Chenming-Hu_ch2-2.pdf
 
Thread 'Weird near-field phenomenon I get in my EM simulation'
I recently made a basic simulation of wire antennas and I am not sure if the near field in my simulation is modeled correctly. One of the things that worry me is the fact that sometimes I see in my simulation "movements" in the near field that seems to be faster than the speed of wave propagation I defined (the speed of light in the simulation). Specifically I see "nodes" of low amplitude in the E field that are quickly "emitted" from the antenna and then slow down as they approach the far...
Hello dear reader, a brief introduction: Some 4 years ago someone started developing health related issues, apparently due to exposure to RF & ELF related frequencies and/or fields (Magnetic). This is currently becoming known as EHS. (Electromagnetic hypersensitivity is a claimed sensitivity to electromagnetic fields, to which adverse symptoms are attributed.) She experiences a deep burning sensation throughout her entire body, leaving her in pain and exhausted after a pulse has occurred...
Back
Top