MHB Series Convergence: Test for x Values

Click For Summary
SUMMARY

The discussion centers on the convergence of the series $$ (x-1)-\frac{(x-1)^2}{2!}+\frac{(x-1)^3}{3!}-\frac{(x-1)^4}{4!}+ \cdots $$ for various values of x. It is established that the series converges for any real or complex value of x, as it can be rewritten as $$ \sum_{n=1}^{\infty} (-1)^{n+1} \frac{(x-1)^{n}}{n!} = 1 - e^{-(x-1)} $$, which is derived from the known series for the exponential function. The ratio test is recommended for evaluating convergence in cases where the limit equals 1, necessitating further investigation at those points.

PREREQUISITES
  • Understanding of alternating series
  • Familiarity with the exponential function and its series representation
  • Knowledge of the ratio test for series convergence
  • Basic calculus concepts, including limits
NEXT STEPS
  • Study the properties of alternating series and their convergence criteria
  • Learn about the exponential function's Taylor series expansion
  • Explore the ratio test in depth, including its applications and limitations
  • Investigate convergence tests for series beyond the ratio test, such as the root test
USEFUL FOR

Mathematicians, students studying calculus, and anyone interested in series convergence and analysis of functions.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$$(x-1)-\frac{(x-1)^2}{2!}+\frac{(x-1)^3}{3!}-\frac{(x-1)^4}{4!}+ ∙ ∙ ∙$$

well this looks like an alternating-series, the question is: at what value(s) of x does this
converge.

one observation is that if x=0 then all terms are 0 so there is no convergence, also I presume you can rewrite this as
$\frac{(x-1)^n}{n!}$ and then test for values of $x$
 
Last edited:
Physics news on Phys.org
karush said:
$$(x-1)-\frac{(x-1)^2}{2!}+\frac{(x-1)^3}{3!}-\frac{(x-1)^4}{4!}+ ∙ ∙ ∙$$

well this looks like an alternating-series, the question is: at value(s) of x does this
converge.

one observation is that is if x=0 then all terms are 0 so there is no convergence, also I presume you can rewrite this as
$\frac{(x-1)^n}{n!}$ and then test is for values of $x$

Remembering the well known series...

$\displaystyle \sum_{n=0}^{\infty} (-1)^{n}\ \frac{z^{n}}{n!} = e^{- z}\ (1)$

... that converges for any real or complex value of z, it is easy to observe that is...

$\displaystyle \sum_{n=1}^{\infty} (-1)^{n+1}\ \frac{(x-1)^{n}}{n!} = 1 - e^{- (x-1)}\ (2)$

... and the series (2) converges for any value of x...

Kind regards

$\chi$ $\sigma$
 
karush said:
$$(x-1)-\frac{(x-1)^2}{2!}+\frac{(x-1)^3}{3!}-\frac{(x-1)^4}{4!}+ ∙ ∙ ∙$$

well this looks like an alternating-series, the question is: at what value(s) of x does this
converge.

one observation is that if x=0 then all terms are 0 so there is no convergence, also I presume you can rewrite this as
$\frac{(x-1)^n}{n!}$ and then test for values of $x$

Even though recognising this series as an exponential function is the quickest method, if you didn't realize that, then you would have to apply the ratio test.

The ratio test states that for a series $\displaystyle \begin{align*} \sum{ a_n } \end{align*}$, the series will be convergent if $\displaystyle \begin{align*} \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| < 1 \end{align*}$. But in your case, you have a function of x, which gives a different series for every x that is put in. So what you have to do is to evaluate $\displaystyle \begin{align*} \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| \end{align*}$ in terms of x, then set this expression less than 1 and solve for x. This will tell you nearly all the values of x for which your function gives a convergent series (you need to check the points where this limit is equal to 1 separately, as the ratio test is inconclusive there...)
 
Last edited:
Relativistic Momentum, Mass, and Energy Momentum and mass (...), the classic equations for conserving momentum and energy are not adequate for the analysis of high-speed collisions. (...) The momentum of a particle moving with velocity ##v## is given by $$p=\cfrac{mv}{\sqrt{1-(v^2/c^2)}}\qquad{R-10}$$ ENERGY In relativistic mechanics, as in classic mechanics, the net force on a particle is equal to the time rate of change of the momentum of the particle. Considering one-dimensional...

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 17 ·
Replies
17
Views
5K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 11 ·
Replies
11
Views
5K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K