Series RLC Circuits: Resonant Frequency of 60° at 40 Hz

Click For Summary
SUMMARY

A series RLC circuit with a resistance of 250 ohms and an inductance of 0.6 H exhibits a leading phase angle of 60° at a frequency of 40 Hz. The resonant frequency for this circuit is calculated to be 81.2 Hz, where the total reactance is zero, resulting in purely resistive impedance. The discussion highlights the distinction between minimum impedance and resonance, clarifying that resonance occurs when the inductive reactance (XL) equals the capacitive reactance (XC). The conversation also addresses the historical context of resonance definitions as noted in Terman's Radio Engineering.

PREREQUISITES
  • Understanding of series RLC circuit components (resistor, inductor, capacitor)
  • Familiarity with reactance and impedance concepts
  • Knowledge of phase angles in AC circuits
  • Basic principles of resonance in electrical engineering
NEXT STEPS
  • Study the calculation of resonant frequency in RLC circuits
  • Learn about the impact of quality factor (Q) on circuit behavior
  • Explore the differences between series and parallel RLC circuits
  • Investigate historical definitions of resonance in electrical engineering literature
USEFUL FOR

Electrical engineers, students studying circuit theory, and anyone interested in the behavior of RLC circuits and resonance phenomena.

Butterfly41398
Messages
8
Reaction score
0
Poster has been reminded to post schoolwork in the Homework Help forums
Summary:: About resonant frequencies

A series RLC circuit with R = 250 ohms and L = 0.6 H results in a leading phase angle of 60° at a frequency of 40 Hz. At what frequency will the circuit resonate?

Answer is 81.2 Hz but i got a different answer. May someone please correct me.
 

Attachments

  • 20210403_102747.jpg
    20210403_102747.jpg
    30.2 KB · Views: 262
  • 20210403_102725.jpg
    20210403_102725.jpg
    36 KB · Views: 252
Physics news on Phys.org
If "resonance" meaning it is "impedance=0" it is not possible for ever any frequency, but it is a minimum impedance when XL=XC
Z=[(XL-XC)^2+R^2] and it is for 78.707 Hz
 
Butterfly41398 said:
At what frequency will the circuit resonate?
What is your definition for "resonance"?
I ask this because there exist some confusion concerning this term.
I think, the most general definition is: Zero phase between voltage and current - identical to a pure real resistance. In some simple cases this requirement is identical to voltage maximum (bandpass) or minimum (bandstop), but this is nothing else than the RESULT of applying the above definition.
 
Is this homework?

There are two separate problems here.
1. Identify the value of capacitance that will give a leading phase of 60° at 40 Hz.
2. Identify the frequency at which XL + XC = zero.

Unfortunately I am having trouble reading you work.

Babadag said:
... but it is a minimum impedance when XL=XC
Since XC is negative, and XL is positive, resonance is when XL + XC = 0.
At the resonant frequency the total reactance is zero.
The impedance is not zero at resonance, the impedance is purely resistive.
 
LvW said:
What is your definition for "resonance"?
I ask this because there exist some confusion concerning this term.
I think, the most general definition is: Zero phase between voltage and current - identical to a pure real resistance. In some simple cases this requirement is identical to voltage maximum (bandpass) or minimum (bandstop), but this is nothing else than the RESULT of applying the above definition.
Fort a series RLC circuit, minimum impedance coincides with zero phase difference. For a a parallel RLC circuit, the two do not quite coincide. But this is only noticable when the Q is very low.
 
tech99 said:
Fort a series RLC circuit, minimum impedance coincides with zero phase difference. For a a parallel RLC circuit, the two do not quite coincide. But this is only noticable when the Q is very low.
For ideal RLC components, I find that hard to believe mathematically. Maybe you are considering the more complex situation where the inductor in a parallel RLC circuit also has some series wire resistance?
 
It is correct calculated, I think.
 

Attachments

  • RLC Series.jpg
    RLC Series.jpg
    52.2 KB · Views: 199
Baluncore said:
For ideal RLC components, I find that hard to believe mathematically. Maybe you are considering the more complex situation where the inductor in a parallel RLC circuit also has some series wire resistance?
First of all my apologies for a slip, that the parallel resonant circuit exhibits high not low impedance.
But if you look at Radio Engineering by Terman, or if you draw a phasor diagram, for pure L, C and R in parallel, you will notice that zero phase does not coincide with max impedance. This is only noticeable when the Q is very low, less than say 5. Q may be defined as R/XL for this purpose.
 
tech99 said:
But if you look at Radio Engineering by Terman, or if you draw a phasor diagram, for pure L, C and R in parallel, you will notice that zero phase does not coincide with max impedance. This is only noticeable when the Q is very low, less than say 5. Q may be defined as R/XL for this purpose.
Terman wrote that early in the 1940s and employed at the time a different definition of the RLC circuits.

For the series RLC circuit, the R component was made from the sum of the L and C series resistances.
Termans series circuit was symbolically ( RL + RC ) + jXL + jXC;

For the parallel circuit, the R components remained in series with both the L and C components, before the subcircuits were placed in parallel.
Termans parallel circuit was symbolically ( RL + jXL ) // ( RC + jXC )

New Bitmap Image.png

That explains why Terman wrote; “Furthermore, the details of the behavior of a low Q parallel circuit also depend upon the division of resistance between the inductive and capacitive branches, upon the way in which the resistance varies with frequency, and upon whether the adjustment to resonance is made by varying the frequency, inductance, or capacity.”

The convention now is to assume ideal components with a single R in series or in parallel with ideal L and C components.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
774
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 40 ·
2
Replies
40
Views
6K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 21 ·
Replies
21
Views
1K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 11 ·
Replies
11
Views
12K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
19
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K