Series using Geometric series argument

Click For Summary
SUMMARY

The discussion focuses on evaluating a series using the geometric series argument, specifically the formula for convergence when the absolute value of the ratio \( r \) is less than 1. The series in question is expressed as \( S = \sum_{k=1}^{\infty}\left[\frac{8}{5^k}-\frac{8}{5^{k+1}}\right] \), which simplifies to \( \frac{32}{25}\left(\frac{1}{5}\right)^{k-1} \). The final evaluation yields \( S = \frac{8}{5} \), confirming the convergence of the series under the specified conditions.

PREREQUISITES
  • Understanding of geometric series convergence criteria
  • Familiarity with series notation and summation techniques
  • Basic knowledge of limits and infinite series
  • Ability to manipulate algebraic expressions involving fractions
NEXT STEPS
  • Study the properties of geometric series in detail
  • Learn about convergence tests for infinite series
  • Explore applications of geometric series in real-world problems
  • Investigate advanced series summation techniques and their proofs
USEFUL FOR

Mathematicians, students studying calculus, educators teaching series convergence, and anyone interested in advanced mathematical concepts related to infinite series.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\displaystyle\text{if} \left| r \right|< 1 \text{ the geometric series }
a+ar+ar^2+\cdots ar^{n-1}+\cdots \text{converges} $
$\displaystyle\text{to} \frac{a}{(1-r)}.$
$$\sum_{n=1}^{\infty}ar^{n-1}=\frac{a}{(1-r)}, \ \ \left| r \right|< 1$$
$\text{if} \left| r \right|\ge 1 \text{, the series diverges}$

$\text{Evaluate using geometric series argument}$
\begin{align*}
\displaystyle
S&=\sum_{k=1}^{\infty}\left[\frac{8}{5^k}-\frac{8}{5^{k+1}}\right] \\
\left[\frac{8}{5^k}-\frac{8}{5^{k+1}}\right]&=\frac{32}{5\cdot5^k} \\
&=
\end{align*}

$\text{ok wasn't sure how to plug this in?}$

$\tiny{206.10.3.75}$
 
Last edited:
Physics news on Phys.org
I would write:

$$\frac{32}{5\cdot5^k}=\frac{32}{25}\left(\frac{1}{5}\right)^{k-1}$$

Now you're ready to plug and play. :D
 
$\displaystyle\text{if} \left| r \right|< 1 \text{ the geometric series }
a+ar+ar^2+\cdots ar^{n-1}+\cdots \text{converges} $
$\displaystyle\text{to} \frac{a}{(1-r)}.$
$$\sum_{n=1}^{\infty}ar^{n-1}=\frac{a}{(1-r)}, \ \ \left| r \right|< 1$$
$\text{if} \left| r \right|\ge 1 \text{, the series diverges}$

$\text{Evaluate using geometric series argument}$
\begin{align*}
\displaystyle
S&=\sum_{k=1}^{\infty}\left[\frac{8}{5^k}-\frac{8}{5^{k+1}}\right] \\
\left[\frac{8}{5^k}-\frac{8}{5^{k+1}}\right]&=\frac{32}{5\cdot5^k} =\frac{32}{25}\left(\frac{1}{5}\right)^{k-1 }\\
\text{so then } a&=\frac{32}{25}; r=\frac{1}{5} \\
\sum_{n=1}^{\infty}\frac{32}{25}
\left(\frac{1}{5}\right)^{n-1}
&=\frac{\frac{32}{25}}{(1-\frac{1}{5})}=\frac{8}{5}
\end{align*}
$\tiny{206.10.3.75}$
☕
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K