MHB Series using Geometric series argument

Click For Summary
The discussion focuses on the evaluation of a series using the geometric series argument, specifically for the series defined as S = ∑(8/5^k - 8/5^(k+1)). It is established that when |r| < 1, the geometric series converges to a/(1-r), and when |r| ≥ 1, it diverges. The expression is simplified to 32/(5·5^k), allowing for the identification of a = 32/25 and r = 1/5. The final evaluation of the series results in S = 8/5. The discussion effectively demonstrates the application of the geometric series formula in evaluating the given series.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\displaystyle\text{if} \left| r \right|< 1 \text{ the geometric series }
a+ar+ar^2+\cdots ar^{n-1}+\cdots \text{converges} $
$\displaystyle\text{to} \frac{a}{(1-r)}.$
$$\sum_{n=1}^{\infty}ar^{n-1}=\frac{a}{(1-r)}, \ \ \left| r \right|< 1$$
$\text{if} \left| r \right|\ge 1 \text{, the series diverges}$

$\text{Evaluate using geometric series argument}$
\begin{align*}
\displaystyle
S&=\sum_{k=1}^{\infty}\left[\frac{8}{5^k}-\frac{8}{5^{k+1}}\right] \\
\left[\frac{8}{5^k}-\frac{8}{5^{k+1}}\right]&=\frac{32}{5\cdot5^k} \\
&=
\end{align*}

$\text{ok wasn't sure how to plug this in?}$

$\tiny{206.10.3.75}$
 
Last edited:
Physics news on Phys.org
I would write:

$$\frac{32}{5\cdot5^k}=\frac{32}{25}\left(\frac{1}{5}\right)^{k-1}$$

Now you're ready to plug and play. :D
 
$\displaystyle\text{if} \left| r \right|< 1 \text{ the geometric series }
a+ar+ar^2+\cdots ar^{n-1}+\cdots \text{converges} $
$\displaystyle\text{to} \frac{a}{(1-r)}.$
$$\sum_{n=1}^{\infty}ar^{n-1}=\frac{a}{(1-r)}, \ \ \left| r \right|< 1$$
$\text{if} \left| r \right|\ge 1 \text{, the series diverges}$

$\text{Evaluate using geometric series argument}$
\begin{align*}
\displaystyle
S&=\sum_{k=1}^{\infty}\left[\frac{8}{5^k}-\frac{8}{5^{k+1}}\right] \\
\left[\frac{8}{5^k}-\frac{8}{5^{k+1}}\right]&=\frac{32}{5\cdot5^k} =\frac{32}{25}\left(\frac{1}{5}\right)^{k-1 }\\
\text{so then } a&=\frac{32}{25}; r=\frac{1}{5} \\
\sum_{n=1}^{\infty}\frac{32}{25}
\left(\frac{1}{5}\right)^{n-1}
&=\frac{\frac{32}{25}}{(1-\frac{1}{5})}=\frac{8}{5}
\end{align*}
$\tiny{206.10.3.75}$
☕
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K