Set is closed as for multiplication of matrices

Click For Summary

Discussion Overview

The discussion revolves around the properties of a set of matrices related to reflections and rotations in the context of group theory, specifically focusing on the closure of the set under matrix multiplication, the invertibility of its elements, and their geometric interpretations. The participants explore various questions related to these properties, including specific calculations and interpretations.

Discussion Character

  • Technical explanation
  • Conceptual clarification
  • Debate/contested
  • Mathematical reasoning

Main Points Raised

  • Some participants propose that the set \( G \) consists of matrices that generate the symmetries of a triangle, forming a group known as \( D_3 \).
  • There is a discussion about whether all combinations of elements in \( G \) need to be checked to show closure under multiplication.
  • Some participants suggest that since \( d^3 \) and \( s^2 \) are identity matrices, it simplifies the verification of closure and invertibility.
  • There is uncertainty regarding the necessity of checking all forms of elements to demonstrate their invertibility.
  • Participants discuss the geometric interpretation of \( G \) as containing matrices for reflections and rotations.
  • Some participants explore the implications of including a matrix \( z \) that represents a rotation by \( \pi \), suggesting that it leads to the group of symmetries of a hexagon, \( D_6 \).
  • Questions arise about the order of multiplication and whether it suffices to check one order due to the commutative property observed in certain cases.

Areas of Agreement / Disagreement

Participants generally agree on the properties of the matrices and their geometric interpretations, but there is ongoing debate about the necessity of checking all combinations for closure and invertibility, as well as the implications of including matrix \( z \). The discussion remains unresolved on some specific verification methods.

Contextual Notes

Limitations include the potential dependence on definitions of closure and invertibility, as well as the specific forms of the matrices involved. The discussion does not resolve the mathematical steps required for verification of all properties.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! 😊

We have the matrices \begin{equation*}s:=\begin{pmatrix}1 & 0 \\ 0 & -1\end{pmatrix}, \ d:=\frac{1}{2}\begin{pmatrix}-1 & -\sqrt{3} \\ \sqrt{3} & -1\end{pmatrix}\end{equation*} and the points \begin{equation*}p:=\begin{pmatrix}2 \\ 0 \end{pmatrix}, \ q:=\begin{pmatrix}-1 \\ \sqrt{3} \end{pmatrix}, \ r:=\begin{pmatrix}-1 \\ -\sqrt{3} \end{pmatrix}\end{equation*}

I draw the points $p, q, r$ and calculate also the points $sp, sq, sr, dp, dq, dr$ and I noticed that $s$ is a reflection as for the $x$-axis and $d$ is a rotation of $\frac{2\pi}{3}$.

1. Consider $G:=\{d, d^2, d^3, sd, sd^2, sd^3\}\subseteq \mathbb{R}^{2\times 2}$ and show that $G$ is closed as for multiplication of matrices, i.e. $gh\in G$ for all $g,h\in G$.
2. Show that the elements of $G$ are invertible and for each $g\in G$ there is $g^{-1}\in G$.
3. What is the geometric interpretation of $G$ ?
4. Let $z=\begin{pmatrix}-1 & 0 \\ 0 & -1\end{pmatrix}$ and $H:=G\cup \{zg\mid g\in G\}$. Show that $H\subseteq \mathbb{R}^2$ is closed as for multiplication of matrices. Let's start with question 1. Do we have to consider all possible combinations of the elements of $G$ and show that their product is again in $G$ ?
For example, do we have to do the following?
\begin{align*}d\cdot d^2&=d^3\in G \\ d\cdot d^3&=d^4=4-\text{times rotation about }120^{\circ}=\text{ratotaion about }480^{\circ}=\text{rotation about }360^{\circ}+120^{\circ}=\text{rotation about }120^{\circ}\\ & =d\in G \\ d\cdot s\cdot d&=\text{rotation about }120^{\circ}\text{ then reflection about x-axis and then rotation about }120^{\circ}\\ & =\text{reflection abour ax-axis}=s\in G\end{align*}
Or is there is shorter way? :unsure:

At question 2 do we have to show that the matrices are invertible? Or do we have to consider what the matrices represent? :unsure:
 
Physics news on Phys.org
Hi mathmari!

The short way is to recognize that a reflection and a rotation by $\frac{2\pi}3$ generate the symmetries of a triangle $D_3$, which is know to be a group. 🤔

Alternatively, first consider that $d^3$ is the identify matrix, and that $s^2$ is also the identity matrix.
All elements are either of the form $s d^i$ or of the form $d^j$. If we for instance multiply them in this order, we get $s d^i d^j = s d^{(i+j) \bmod 3}$, which is again an element.
We have the same argument for other combinations, and the only thing we need to check, is what happens when we evaluate $d s$. You should find that is equal to $s d^2$, after which the same argument applies. 🤔

At question 2 do we have to show that the matrices are invertible? Or do we have to consider what the matrices represent?
Both $s$ and $d$ are invertible aren't they?
We can verify by noticing that $s^2=\text{id}$ and $d^3=\text{id}$.
Consequently every product of them is also invertible. 🤔
 
Klaas van Aarsen said:
Alternatively, first consider that $d^3$ is the identify matrix, and that $s^2$ is also the identity matrix.
All elements are either of the form $s d^i$ or of the form $d^j$. If we for instance multiply them in this order, we get $s d^i d^j = s d^{(i+j) \bmod 3}$, which is again an element.
We have the same argument for other combinations, and the only thing we need to check, is what happens when we evaluate $d s$. You should find that is equal to $s d^2$, after which the same argument applies. 🤔

We have that $m=ds \Rightarrow ms=ds^2 \Rightarrow ms=d \Rightarrow d^2ms=d^3 \Rightarrow d^2ms=1_{\mathbb{R}^{2\times 2}}$. How do we get from there that $m=sd^2$ ? :unsure:
Klaas van Aarsen said:
Both $s$ and $d$ are invertible aren't they?
We can verify by noticing that $s^2=\text{id}$ and $d^3=\text{id}$.
Consequently every product of them is also invertible. 🤔

And to show that the inverse of each element is also in $G$ do we have to check again all possible forms of the elements? :unsure:
 
Last edited by a moderator:
mathmari said:
We have that $m=ds \Rightarrow ms=ds^2 \Rightarrow ms=d \Rightarrow d^2ms=d^3 \Rightarrow d^2ms=1_{\mathbb{R}^{2\times 2}}$. How do we get from there that $m=sd^2$ ?
We can do the matrix multiplication. 🤔
And to show that the inverse of each element is also in $G$ do we have to check again all possible forms of the elements?
That is not necessary.
We have the matrix property that the product of invertible matrices is also invertible.
So it suffices to verify that both $s$ and $d$ are invertible. Then we can conclude that all elements are invertible. 🤔
 
Klaas van Aarsen said:
We have the matrix property that the product of invertible matrices is also invertible.
So it suffices to verify that both $s$ and $d$ are invertible. Then we can conclude that all elements are invertible. 🤔

We have that $s^2=\text{id}$ so the inverse of $s$ is $s$ itself, but $s$ is not in $G$, but we have that $s=sd^3\in G$, si this is the inverse in $G$.

The inverse of $d$ is $d^2$ since $d^3=\text{id}$.

Since all the other elements are products of these elements it follows that their inverses will also be in $G$.

Is everything correct? :unsure:
 
mathmari said:
We have that $s^2=\text{id}$ so the inverse of $s$ is $s$ itself, but $s$ is not in $G$, but we have that $s=sd^3\in G$, si this is the inverse in $G$.

The inverse of $d$ is $d^2$ since $d^3=\text{id}$.

Since all the other elements are products of these elements it follows that their inverses will also be in $G$.

Is everything correct?
Yep. (Nod)
 
As for question 3 : What is the geometric interpretation of $G$ ? That it contains the matrices for reflections and rotations?

As for question 4 : Let $g=\begin{pmatrix}a & b \\ c & d\end{pmatrix}$ then $zg=\begin{pmatrix}-1 & 0 \\ 0 & -1\end{pmatrix}\begin{pmatrix}a & b \\ c & d\end{pmatrix}=\begin{pmatrix}-a & -b \\ -c & -d\end{pmatrix}$ and $gz=\begin{pmatrix}a & b \\ c & d\end{pmatrix}\begin{pmatrix}-1 & 0 \\ 0 & -1\end{pmatrix}=\begin{pmatrix}-a & -b \\ -c & -d\end{pmatrix}$ and so we get $zg=gz$.
So every possible element of $G$ is $d^j$ or $sd^i$. Since $zg=gz$ we have to check only one order of multiplication, right?

Is the geometric interpretation of $H$ the reflection and rotation? :unsure:
 
mathmari said:
As for question 3 : What is the geometric interpretation of $G$ ? That it contains the matrices for reflections and rotations?

Yes, and more specifically the reflections and rotations that make up the symmetries of the triangle.
It's the dihedral group $D_3$. 🤔

As for question 4 : Let $g=\begin{pmatrix}a & b \\ c & d\end{pmatrix}$ then $zg=\begin{pmatrix}-1 & 0 \\ 0 & -1\end{pmatrix}\begin{pmatrix}a & b \\ c & d\end{pmatrix}=\begin{pmatrix}-a & -b \\ -c & -d\end{pmatrix}$ and $gz=\begin{pmatrix}a & b \\ c & d\end{pmatrix}\begin{pmatrix}-1 & 0 \\ 0 & -1\end{pmatrix}=\begin{pmatrix}-a & -b \\ -c & -d\end{pmatrix}$ and so we get $zg=gz$.
So every possible element of $G$ is $d^j$ or $sd^i$. Since $zg=gz$ we have to check only one order of multiplication, right?

Is the geometric interpretation of $H$ the reflection and rotation?
Matrix $z$ represents a rotation by $\pi$. The composition $zd^2$ is therefore a rotation by $\frac\pi 3$.
So we get twice as many rotations.
The result is the group of symmetries of a hexagon - the dihedral group $D_6$. 🧐
 
Last edited:
Klaas van Aarsen said:
Alternatively, first consider that $d^3$ is the identify matrix, and that $s^2$ is also the identity matrix.
All elements are either of the form $s d^i$ or of the form $d^j$. If we for instance multiply them in this order, we get $s d^i d^j = s d^{(i+j) \bmod 3}$, which is again an element.
We have the same argument for other combinations, and the only thing we need to check, is what happens when we evaluate $d s$. You should find that is equal to $s d^2$, after which the same argument applies. 🤔

Are all possible products the following?

- $sd^isd^i=1_{\mathbb{R}^{2\times 2}}=d^3\in G$
- $sd^id^j=s d^{(i+j) \bmod 3}\in G$
- $d^jsd^i=sd^i\in G$
- $d^jd^j=d^{(i+j) \bmod 3}\in G$

:unsure:
 
  • #10
mathmari said:
Are all possible products the following?

- $sd^isd^i=1_{\mathbb{R}^{2\times 2}}=d^3\in G$

The products $sd^isd^j$ with $i\ne j$ seem to be missing. :oops:

- $sd^id^j=s d^{(i+j) \bmod 3}\in G$
- $d^jsd^i=sd^i\in G$

What happened to $j$? 🤔

- $d^jd^j=d^{(i+j) \bmod 3}\in G$
 
  • #11
Klaas van Aarsen said:
The products $sd^isd^j$ with $i\ne j$ seem to be missing. :oops:
What happened to $j$? 🤔

It should be :

- $sd^isd^j=1_{\mathbb{R}^{2\times 2}}=d^3\in G$
- $sd^id^j=s d^{(i+j) \bmod 3}\in G$
- $d^jsd^i=sd^k\in G$ for some $k\in \{1,2,3\}$
- $d^id^j=d^{(i+j) \bmod 3}\in G$

Or not? :unsure:
 
  • #12
mathmari said:
- $sd^isd^j=1_{\mathbb{R}^{2\times 2}}=d^3\in G$
Suppose $i=3$ and $j=1$, then $sd^isd^j=d\ne d^3$ isn't it? :oops:
 
  • #13
Klaas van Aarsen said:
Suppose $i=3$ and $j=1$, then $sd^isd^j=d\ne d^3$ isn't it? :oops:

Ah yes! So it will be a power of $d$, or not? :unsure:
 
  • #14
mathmari said:
Ah yes! So it will be a power of $d$, or not?
Yep. (Nod)
 
  • #15
Klaas van Aarsen said:
Yep. (Nod)

Ok! So we get:

- $sd^isd^j=d^k\in G$ for some $k\in \{1,2,3\}$
- $sd^id^j=s d^{(i+j) \bmod 3}\in G$
- $d^jsd^i=sd^k\in G$ for some $k\in \{1,2,3\}$
- $d^id^j=d^{(i+j) \bmod 3}\in G$

right? :unsure:
 
  • #16
Yep. (Nod)
 
  • #17
Great! Thank you! (Handshake)
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
31
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 52 ·
2
Replies
52
Views
4K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 8 ·
Replies
8
Views
3K