MHB Seth's question via email about a Laplace Transform

Click For Summary
SUMMARY

The Laplace Transform of the function $\displaystyle 36\left[ \frac{\cosh{\left( 4\,t \right) } - 1}{t} \right]$ is calculated using the formula $\displaystyle \mathcal{L}\,\left\{ \frac{f\left( t \right)}{t} \right\} = \int_s^{\infty}{F\left( u \right) \,\mathrm{d}u }$. Here, $\displaystyle f\left( t \right) = \cosh{\left( 4\,t \right) } - 1$ leads to $\displaystyle F\left( s \right) = \frac{s}{s^2 - 16} - \frac{1}{s}$. The final result, after evaluating the integral, is $\displaystyle -\frac{36}{2} \ln{\left| 1 - \frac{16}{s^2} \right|}$, confirming the necessity of including the factor of 36 in the final expression.

PREREQUISITES
  • Understanding of Laplace Transforms
  • Familiarity with hyperbolic functions, specifically $\cosh$
  • Knowledge of integration techniques for improper integrals
  • Proficiency in logarithmic properties and limits
NEXT STEPS
  • Study the properties of Laplace Transforms in detail
  • Explore hyperbolic functions and their applications in engineering
  • Learn advanced techniques for evaluating improper integrals
  • Review logarithmic identities and their use in calculus
USEFUL FOR

Students and professionals in mathematics, engineering, and physics who require a solid understanding of Laplace Transforms and their applications in solving differential equations.

Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
Find the Laplace Transform of $\displaystyle 36\left[ \frac{\cosh{\left( 4\,t \right) } - 1}{t} \right] $.

Since this is of the form $\displaystyle \frac{f\left( t \right)}{t} $ we should use $\displaystyle \mathcal{L}\,\left\{ \frac{f\left( t \right) }{t} \right\} = \int_s^{\infty}{F\left( u \right) \,\mathrm{d}u } $.

Here $\displaystyle f\left( t \right) = \cosh{\left( 4\,t \right) } - 1 $ and so

$\displaystyle F\left( s \right) = \frac{s}{s^2 - 16} - \frac{1}{s} $

Therefore

$\displaystyle \begin{align*} \mathcal{L}\,\left\{ \frac{\cosh{\left( 4\,t \right) } - 1}{t} \right\} &= \int_s^{\infty}{ \left( \frac{u}{u^2 - 16} - \frac{1}{u} \right) \,\mathrm{d}u } \\
&= \lim_{b \to \infty}\int_s^b{ \left( \frac{u}{u^2 - 16} - \frac{1}{u} \right) \,\mathrm{d}u } \\
&= \lim_{b \to \infty} \left[ \frac{1}{2}\,\ln{\left| u^2 - 16 \right| } - \ln{\left| u \right| } \right] _s^b \\
&= \frac{1}{2} \lim_{b \to \infty} \left[ \ln{ \left| u^2 - 16 \right| } - 2\,\ln{ \left| u \right| } \right] _s^b \\
&= \frac{1}{2} \lim_{b \to \infty} \left[ \ln{ \left| u^2 - 16 \right| } - \ln{ \left| u^2 \right| } \right] _s^b \\
&= \frac{1}{2} \lim_{b \to \infty} \left[ \ln{ \left| \frac{u^2 - 16}{u^2} \right| } \right] _s^b \\
&= \frac{1}{2} \lim_{b \to \infty} \left[ \ln{ \left| 1 - \frac{16}{u^2} \right| } \right] _s^b \\
&= \frac{1}{2} \left\{ \lim_{b \to \infty} \left[ \ln{ \left| 1 - \frac{16}{b^2} \right| } \right] - \ln{ \left| 1 - \frac{16}{s^2} \right| }\right\} \\ &= \frac{1}{2} \left( \ln{ \left| 1 - 0 \right| } - \ln{ \left| 1 - \frac{16}{s^2} \right| } \right) \\
&= \frac{1}{2} \left( 0 - \ln{ \left| 1 - \frac{16}{s^2} \right| } \right) \\ &= -\frac{1}{2} \, \ln{ \left| 1 - \frac{16}{s^2} \right| } \end{align*} $
 
Physics news on Phys.org
That seems correct to me, I check the tables, you forgot the factor of 36 out front tho.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 2 ·
Replies
2
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 4 ·
Replies
4
Views
11K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
7K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
10K