MHB Seth's question via email about a Laplace Transform

Click For Summary
The Laplace Transform of the function \( 36\left[ \frac{\cosh{\left( 4\,t \right) } - 1}{t} \right] \) is derived using the property for transforms of the form \( \frac{f(t)}{t} \). The function \( f(t) \) is identified as \( \cosh{\left( 4\,t \right)} - 1 \), leading to the transform \( F(s) = \frac{s}{s^2 - 16} - \frac{1}{s} \). The integral for the Laplace Transform is evaluated, resulting in the expression \( -\frac{1}{2} \ln{\left| 1 - \frac{16}{s^2} \right|} \). The final result must include the factor of 36, confirming the correct application of the transform.
Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
Find the Laplace Transform of $\displaystyle 36\left[ \frac{\cosh{\left( 4\,t \right) } - 1}{t} \right] $.

Since this is of the form $\displaystyle \frac{f\left( t \right)}{t} $ we should use $\displaystyle \mathcal{L}\,\left\{ \frac{f\left( t \right) }{t} \right\} = \int_s^{\infty}{F\left( u \right) \,\mathrm{d}u } $.

Here $\displaystyle f\left( t \right) = \cosh{\left( 4\,t \right) } - 1 $ and so

$\displaystyle F\left( s \right) = \frac{s}{s^2 - 16} - \frac{1}{s} $

Therefore

$\displaystyle \begin{align*} \mathcal{L}\,\left\{ \frac{\cosh{\left( 4\,t \right) } - 1}{t} \right\} &= \int_s^{\infty}{ \left( \frac{u}{u^2 - 16} - \frac{1}{u} \right) \,\mathrm{d}u } \\
&= \lim_{b \to \infty}\int_s^b{ \left( \frac{u}{u^2 - 16} - \frac{1}{u} \right) \,\mathrm{d}u } \\
&= \lim_{b \to \infty} \left[ \frac{1}{2}\,\ln{\left| u^2 - 16 \right| } - \ln{\left| u \right| } \right] _s^b \\
&= \frac{1}{2} \lim_{b \to \infty} \left[ \ln{ \left| u^2 - 16 \right| } - 2\,\ln{ \left| u \right| } \right] _s^b \\
&= \frac{1}{2} \lim_{b \to \infty} \left[ \ln{ \left| u^2 - 16 \right| } - \ln{ \left| u^2 \right| } \right] _s^b \\
&= \frac{1}{2} \lim_{b \to \infty} \left[ \ln{ \left| \frac{u^2 - 16}{u^2} \right| } \right] _s^b \\
&= \frac{1}{2} \lim_{b \to \infty} \left[ \ln{ \left| 1 - \frac{16}{u^2} \right| } \right] _s^b \\
&= \frac{1}{2} \left\{ \lim_{b \to \infty} \left[ \ln{ \left| 1 - \frac{16}{b^2} \right| } \right] - \ln{ \left| 1 - \frac{16}{s^2} \right| }\right\} \\ &= \frac{1}{2} \left( \ln{ \left| 1 - 0 \right| } - \ln{ \left| 1 - \frac{16}{s^2} \right| } \right) \\
&= \frac{1}{2} \left( 0 - \ln{ \left| 1 - \frac{16}{s^2} \right| } \right) \\ &= -\frac{1}{2} \, \ln{ \left| 1 - \frac{16}{s^2} \right| } \end{align*} $
 
Mathematics news on Phys.org
That seems correct to me, I check the tables, you forgot the factor of 36 out front tho.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 2 ·
Replies
2
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 4 ·
Replies
4
Views
11K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
7K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
10K