MHB Seth's question via email about a Laplace Transform

Click For Summary
The Laplace Transform of the function \( 36\left[ \frac{\cosh{\left( 4\,t \right) } - 1}{t} \right] \) is derived using the property for transforms of the form \( \frac{f(t)}{t} \). The function \( f(t) \) is identified as \( \cosh{\left( 4\,t \right)} - 1 \), leading to the transform \( F(s) = \frac{s}{s^2 - 16} - \frac{1}{s} \). The integral for the Laplace Transform is evaluated, resulting in the expression \( -\frac{1}{2} \ln{\left| 1 - \frac{16}{s^2} \right|} \). The final result must include the factor of 36, confirming the correct application of the transform.
Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
Find the Laplace Transform of $\displaystyle 36\left[ \frac{\cosh{\left( 4\,t \right) } - 1}{t} \right] $.

Since this is of the form $\displaystyle \frac{f\left( t \right)}{t} $ we should use $\displaystyle \mathcal{L}\,\left\{ \frac{f\left( t \right) }{t} \right\} = \int_s^{\infty}{F\left( u \right) \,\mathrm{d}u } $.

Here $\displaystyle f\left( t \right) = \cosh{\left( 4\,t \right) } - 1 $ and so

$\displaystyle F\left( s \right) = \frac{s}{s^2 - 16} - \frac{1}{s} $

Therefore

$\displaystyle \begin{align*} \mathcal{L}\,\left\{ \frac{\cosh{\left( 4\,t \right) } - 1}{t} \right\} &= \int_s^{\infty}{ \left( \frac{u}{u^2 - 16} - \frac{1}{u} \right) \,\mathrm{d}u } \\
&= \lim_{b \to \infty}\int_s^b{ \left( \frac{u}{u^2 - 16} - \frac{1}{u} \right) \,\mathrm{d}u } \\
&= \lim_{b \to \infty} \left[ \frac{1}{2}\,\ln{\left| u^2 - 16 \right| } - \ln{\left| u \right| } \right] _s^b \\
&= \frac{1}{2} \lim_{b \to \infty} \left[ \ln{ \left| u^2 - 16 \right| } - 2\,\ln{ \left| u \right| } \right] _s^b \\
&= \frac{1}{2} \lim_{b \to \infty} \left[ \ln{ \left| u^2 - 16 \right| } - \ln{ \left| u^2 \right| } \right] _s^b \\
&= \frac{1}{2} \lim_{b \to \infty} \left[ \ln{ \left| \frac{u^2 - 16}{u^2} \right| } \right] _s^b \\
&= \frac{1}{2} \lim_{b \to \infty} \left[ \ln{ \left| 1 - \frac{16}{u^2} \right| } \right] _s^b \\
&= \frac{1}{2} \left\{ \lim_{b \to \infty} \left[ \ln{ \left| 1 - \frac{16}{b^2} \right| } \right] - \ln{ \left| 1 - \frac{16}{s^2} \right| }\right\} \\ &= \frac{1}{2} \left( \ln{ \left| 1 - 0 \right| } - \ln{ \left| 1 - \frac{16}{s^2} \right| } \right) \\
&= \frac{1}{2} \left( 0 - \ln{ \left| 1 - \frac{16}{s^2} \right| } \right) \\ &= -\frac{1}{2} \, \ln{ \left| 1 - \frac{16}{s^2} \right| } \end{align*} $
 
Mathematics news on Phys.org
That seems correct to me, I check the tables, you forgot the factor of 36 out front tho.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...

Similar threads