OK. Well, here goes ... I'm prepared for some scoffing.
The wiki article
Flatness_problem proceeds to this equation
(Ω^{-1} - 1)ρa^{2} = -3kc^{2}/8∏G
with the claim that all of the terms on the RHS are constants.
Now, here comes the silly part ... are they? Constant, I mean. Really? Are we sure?
Take, for example, ∏. Is this supposed to be exactly and only the value of ∏ as calculated mathematically? Or is it supposed to be the ratio of circumference to radius of a circle in the universe in question AND at the time in question? So, if the Universe is spatially curved then wouldn't ∏ potentially be different to the value that we have calculated in a flat (Euclidean) geometry and use in our current equations? And, in particular, wouldn't it change value as the Universe expands causing the curvature to change?
So, take k as well. The wiki article says
but, if the Universe is finite and expanding then wouldn't that change the value of k over time as well?
And, then, onto the big one - c. Isn't it conceivable that the speed of light has changed as the Universe has expanded.
I completely accept the important position of the theories of relativity to modern physics (and I even understand the theories to a limited extent myself - particularly special relativity). But, as I understand it, the constancy of the speed of light as used in (special) relativity is with respect to different inertial frames of reference. But that doesn't mean that the speed of light measured in an earlier epoch(?) of the Universe would have to be the same value as now, does it? In one sense, it reads to me as different frames of reference in a 'static' universe.
Is it possible that the speed of light is a function of the curvature of space? So, that in the early Universe, when the curvature was extremely high the speed of light would have been much different (smaller?) to now. Obviously that would greatly affect our measures for the age and size of the Universe, but it might also provide an alternative to 'inflation' and it would also explain why the speed of light is a limit, as now the limit is actually imposed by the topology/structure of the Universe.
Is there any evidence to suggest that the speed of light is different for different values of curvature? For example, light is 'bent around' very massive objects such as galaxies - is this not the same as saying that light is refracted by very massive objects? Does such 'refraction' of light imply a velocity change in the region of the massive object, i.e. the region of (locally) different spatial curvature?