here is the syllabus from Univ of Washington. More reasonable on algebra and reals, but more advanced on complex and quite advanced in manifolds and linear analysis. they do have a couple options to substitute a course for one exam or an oral for a written exam. Thats a lot of stuff to know.
Algebra
Topics: Linear algebra (canonical forms for matrices, bilinear forms, spectral theorems), commutative rings (PIDs, UFDs, modules over PIDs, prime and maximal ideals, noetherian rings, Hilbert basis theorem), groups (solvability and simplicity, composition series, Sylow theorems, group actions, permutation groups, and linear groups), fields (roots of polynomials, finite and algebraic extensions, algebraic closure, splitting fields and normal extensions, Galois groups and Galois correspondence, solvability of equations).
References: Dummit and Foote, Abstract Algebra, second edition; Lang, Algebra; MacLane and Birkhoff, Algebra; Herstein, Topics in Algebra; van der Waerden, Modern Algebra; Hungerford, Algebra.
Real Analysis
Topics: Elementary set theory, elementary general topology, connectedness, compactness, metric spaces, completeness. General measure theory, Lebesgue integral, convergence theorems, Lp spaces, absolute continuity.
References: Hewitt and Stromberg, Real and Abstract Analysis; Rudin, Real and Complex Analysis; Royden, Real Analysis; Folland, Real Analysis.
Complex Analysis
Topics: Cauchy theory and applications. Series and product expansions of holomorphic and meromorphic functions. Classification of isolated singularities. Theory and applications of normal families. Riemann mapping theorem; mappings defined by elementary functions; construction of explicit conformal maps. Runge's theorem and applications. Picard's theorems and applications. Harmonic functions; the Poisson integral; the Dirichlet problem. Analytic continuation and the monodromy theorem. The reflection principle.
References: Ahlfors, Complex Analysis; Conway, Functions of One Complex Variable, vol. 1; Rudin, Real and Complex Analysis (the chapters devoted to complex analysis).
Manifolds
Topics: Elementary manifold theory; the fundamental group and covering spaces; submanifolds, the inverse and implicit function theorems, immersions and submersions; the tangent bundle, vector fields and flows, Lie brackets and Lie derivatives, the Frobenius theorem, tensors, Riemannian metrics, differential forms, Stokes's theorem, the Poincaré lemma, deRham cohomology; elementary properties of Lie groups and Lie algebras, group actions on manifolds, the exponential map.
References: Lee, Introduction to Topological Manifolds (Chapters 1-12) and Introduction to Smooth Manifolds (all but Chapter 16); Massey, Algebraic Topology: An Introduction or A Basic Course in Algebraic Topology (Chapters 1-5); Boothby, An Introduction to Differentiable Manifolds and Riemannian Geometry (Chapters 1-6); and Warner, Foundations of Differentiable Manifolds and Lie Groups (Chapters 1-4).
Linear Analysis
Topics: Linear algebra (spectral theory and resolvents, canonical forms and factorization theorems for matrices), ordinary differential equations (existence and uniqueness theory, linear systems, numerical approximations), Fourier analysis (Fourier series and transforms, convolutions, applications to PDE), functional analysis (theory and examples of Banach and Hilbert spaces and linear operators, spectral theory of compact operators, distribution theory).
References: Kato, A Short Introduction to Perturbation Theory for Linear Operators; Horn and Johnson, Matrix Analysis; Birkhoff and Rota, Ordinary Differential Equations; Coddington and Levinson, Theory of Ordinary Differential Equations; Lambert, Numerical Methods for Ordinary Differential Systems; Dym and McKean, Fourier Series and Integrals; Folland, Fourier Analysis and its Applications; Jones, Lebesgue Integration on Euclidean Space; Riesz and Nagy, Functional Analysis; Retherford, Hilbert Space: Compact Operators and the Trace Theorem; Schechter, Principles of Functional Analysis; Friedlander, Introduction to the Theory of Distributions.