MHB Show Finite Principal Ideals Contain $(d)$ in U.F.D.

  • Thread starter Thread starter mathmari
  • Start date Start date
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Let $R$ be a U.F.D. and $0\neq d\in R$.
I want to show that there are finitely many different principal ideals that contain the ideal $(d)$.

A principal ideal is generated by a single element, say $i$, and so that it contains the ideal $(d)$, $i$ must divide $d$, right? (Wondering)
We have that $d=a_1^{k_1}\cdots a_r^{k_r}$ with $a_i$ irreducible.
Since $R$ is a U.F.D. the irreducible elements are prime. Does it follow from that that the divisors of $d$ are of the form $a_1^{j_1}\cdots a_r^{j_r}$ with $0\leq j_i\leq k_i$ ? (Wondering)
From that we get that the set of the divisors is finite, right? (Wondering)
 
Physics news on Phys.org
Yes.
 
Deveno said:
Yes.

Nice... Thank you! (Yes)
 
Thread 'Derivation of equations of stress tensor transformation'
Hello ! I derived equations of stress tensor 2D transformation. Some details: I have plane ABCD in two cases (see top on the pic) and I know tensor components for case 1 only. Only plane ABCD rotate in two cases (top of the picture) but not coordinate system. Coordinate system rotates only on the bottom of picture. I want to obtain expression that connects tensor for case 1 and tensor for case 2. My attempt: Are these equations correct? Is there more easier expression for stress tensor...
Back
Top