MHB Show Finite Principal Ideals Contain $(d)$ in U.F.D.

  • Thread starter Thread starter mathmari
  • Start date Start date
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Let $R$ be a U.F.D. and $0\neq d\in R$.
I want to show that there are finitely many different principal ideals that contain the ideal $(d)$.

A principal ideal is generated by a single element, say $i$, and so that it contains the ideal $(d)$, $i$ must divide $d$, right? (Wondering)
We have that $d=a_1^{k_1}\cdots a_r^{k_r}$ with $a_i$ irreducible.
Since $R$ is a U.F.D. the irreducible elements are prime. Does it follow from that that the divisors of $d$ are of the form $a_1^{j_1}\cdots a_r^{j_r}$ with $0\leq j_i\leq k_i$ ? (Wondering)
From that we get that the set of the divisors is finite, right? (Wondering)
 
Physics news on Phys.org
Yes.
 
Deveno said:
Yes.

Nice... Thank you! (Yes)
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 40 ·
Replies
40
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 25 ·
Replies
25
Views
3K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K