mathwonk
Science Advisor
Homework Helper
2024 Award
- 11,952
- 2,224
@WWGD, do you refer to the closed unit ball in R^3, i.e. the set of x such that |x| ≤ 1 as the 3ball? If so, surely this is a contractible space, hence homotopy equivalent to a point, hence has zero homology everywhere except at degree zero. What am I missing? Are you referring to the fact that a compact orientable 3 manifold (without boundary) has non zero 3rd homology? the problem here seems to be that the 3 ball has a boundary. Since it is homeomorphic to its image, the image also has no 3rd homology. What do you think?
@StoneTemplePython. Thanks for the relatively elementary reference to Chiin and Steenrod. I am somewhat reluctant to read it there however since I feel any elementary argument should suggest itself to me just by reflecting on it. And I consider winding numbers relatively elementary. The difficulty for me is how to prove that if we have an injective continuous map from the circle to the plane, that there is some point of the plane that the image curve does actually wind around in a non zero way, i.e. why does the complement of the image curve have a bounded component? I don't quite get it from your remark on projections.
Here is a simple statement I would like a simple proof of: a smooth, or even just continuous, injection from R^2 to R^2, is an open mapping, hence a homeomorphism onto an open subset of R^2. This seems to follow from Jordan curve theorem, but since the hypothesis is stronger, might be easier to prove. Notice in dimension one this is just the intermediate value theorem hence pretty elementary, although admittedly as deep as any foundational result in one variable calc.
@StoneTemplePython. Thanks for the relatively elementary reference to Chiin and Steenrod. I am somewhat reluctant to read it there however since I feel any elementary argument should suggest itself to me just by reflecting on it. And I consider winding numbers relatively elementary. The difficulty for me is how to prove that if we have an injective continuous map from the circle to the plane, that there is some point of the plane that the image curve does actually wind around in a non zero way, i.e. why does the complement of the image curve have a bounded component? I don't quite get it from your remark on projections.
Here is a simple statement I would like a simple proof of: a smooth, or even just continuous, injection from R^2 to R^2, is an open mapping, hence a homeomorphism onto an open subset of R^2. This seems to follow from Jordan curve theorem, but since the hypothesis is stronger, might be easier to prove. Notice in dimension one this is just the intermediate value theorem hence pretty elementary, although admittedly as deep as any foundational result in one variable calc.