MHB Show that C.R conditions are held.

  • Thread starter Thread starter Also sprach Zarathustra
  • Start date Start date
  • Tags Tags
    Conditions
Click For Summary
The discussion focuses on demonstrating that the Cauchy-Riemann (C.R.) conditions are satisfied for the function defined as f(z) = e^{-1/z^4} for z ≠ 0 and f(0) = 0. It is established that while f(z) is analytic for non-zero z, it surprisingly meets the C.R. conditions at z = 0, despite not being continuous there. The key calculations involve evaluating the partial derivatives of the real and imaginary components at the origin, which all yield zero. This confirms that the C.R. equations hold at that point, emphasizing the function's unique behavior around the origin. Overall, the discussion highlights the importance of limits and the nature of the function in satisfying the C.R. conditions.
Also sprach Zarathustra
Messages
43
Reaction score
0
Explain me please how to show that C.R conditions are holds.

$$f(z)=\left\{\begin{matrix}e^{-\frac{1}{z^4}}\ \ \ \text{if z not 0 }\\ 0 \ \ \ \ \ \ \ \text{if z not 0 }\end{matrix}\right.$$Thank you.
 
Physics news on Phys.org
Re: Show that C.R conditions are helds.

Also sprach Zarathustra said:
Explain me please how to show that C.R conditions are holds.

$$f(z)=\left\{\begin{matrix}e^{-\frac{1}{z^4}}\ \ \ \text{if z not 0 }\\ 0 \ \ \ \ \ \ \ \text{if z not 0 }\end{matrix}\right.$$Thank you.

That should be 0 if z is 0 correct?

$\displaystyle u = \exp\left(\frac{x^4+y^4-6x^2y^2}{x^8+y^8+4x^6y^2+6x^4y^4+4x^2y^6}\right) \cos \left(\frac{4xy^3-4x^3y}{x^8+y^8+4x^6y^2+6x^4y^4+4x^2y^6}\right)$

$\displaystyle v = \exp\left(\frac{x^4+y^4-6x^2y^2}{x^8+y^8+4x^6y^2+6x^4y^4+4x^2y^6}\right) \sin \left(\frac{4xy^3-4x^3y}{x^8+y^8+4x^6y^2+6x^4y^4+4x^2y^6}\right)$

I then used Mathematica to check the derivatives and they are satisfied.

Then you would only have to check the limit.

If you want, I can send you the mathematica nb file.

CORRECTION

I just noticed I forgot the negative sign. Everything should be multiplied through by negative 1.
 
Last edited:
Re: Show that C.R conditions are helds.

Also sprach Zarathustra said:
Explain me please how to show that C.R conditions are holds.

$$f(z)=\begin{cases}e^{-1/z^4}&(z \ne 0)\\ 0 & (z = 0) \end{cases}$$
I think that the point of this question is to see what happens at the origin (see here).

For every nonzero value of $z$, the function $f(z)$ is analytic in a neighbourhood of $z$ and therefore satisfies the C–R equations. The surprising thing is that $f(z)$ also satisfies the C–R equations at $z=0$, despite not being analytic (not even continuous) there.

To see that, write $z=x+iy$ and $f(z) = f(x,y) = u(x,y) + iv(x,y)$. Then $$\left.\frac{\partial u}{\partial x}\right|_{(0,0)} = \lim_{x\to0}\frac{(\text{re }f(x,0)) - (\text{re }f(0,0))}{x} = \lim_{x\to0}\frac{\text{re }e^{-1/x^4}-0}x.$$
That limit is 0. Similar calculations show that $\frac{\partial v}{\partial x}$, $\frac{\partial u}{\partial y}$ and $\frac{\partial v}{\partial y}$ are all 0 at the origin, and therefore the C–R equations are satisfied there.
 
Re: Show that C.R conditions are helds.

Opalg said:
I think that the point of this question is to see what happens at the origin (see here).

For every nonzero value of $z$, the function $f(z)$ is analytic in a neighbourhood of $z$ and therefore satisfies the C–R equations. The surprising thing is that $f(z)$ also satisfies the C–R equations at $z=0$, despite not being analytic (not even continuous) there.

To see that, write $z=x+iy$ and $f(z) = f(x,y) = u(x,y) + iv(x,y)$. Then $$\left.\frac{\partial u}{\partial x}\right|_{(0,0)} = \lim_{x\to0}\frac{(\text{re }f(x,0)) - (\text{re }f(0,0))}{x} = \lim_{x\to0}\frac{\text{re }e^{-1/x^4}-0}x.$$
That limit is 0. Similar calculations show that $\frac{\partial v}{\partial x}$, $\frac{\partial u}{\partial y}$ and $\frac{\partial v}{\partial y}$ are all 0 at the origin, and therefore the C–R equations are satisfied there.
You are right, about the purpose of this question!I still have troubles make $f(z)$ into the form $f(x,y)=u(x,y)+v(x,y)$.

$$f(x,y)=e^{x^4-6x^2y^2-y^4}e^{4i(xy^3-x^3y)}$$:(
 
Last edited:
Re: Show that C.R conditions are helds.

Also sprach Zarathustra said:
I still have troubles make $f(z)$ into the form $f(x,y)=u(x,y)+v(x,y)$.

$$f(x,y)=e^{x^4-6x^2y^2-y^4}e^{4i(xy^3-x^3y)}$$
In fact, you do not need to find explicit formulas for $u(x,y)$ and $v(x,y)$. To evaluate $\displaystyle\frac{\partial u}{\partial x}$ at the origin, you have to go back to the definition of the derivative $$\left.\frac{\partial u}{\partial x}\right|_{(0,0)} = \lim_{x\to0}\frac{(\text{re }f(x,0)) - (\text{re }f(0,0))}{x}$$ (as in my previous comment). That limit is equal to $$\lim_{x\to0}\frac{\text{re }e^{-1/x^4}-0}x.$$ But $e^{-1/x^4}$ is already real, so its real part is itself. Therefore $$\left.\frac{\partial u}{\partial x}\right|_{(0,0)} = \lim_{x\to0}\frac{e^{-1/x^4}}x.$$ That is a purely real limit, which is equal to 0 (essentially because exponential convergence is more powerful than polynomial convergence).

The key idea here is that in order to evaluate the partial derivatives of $f(z)$ at the origin, you only need to evaluate $f(z)$ at points on the coordinate axes. But $f(z)$ is real at all such points. Hence $u$ is equal to $f$, and $v$ is equal to 0, at all such points.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
21
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K