Show That $F(S)$ Is the Smallest Subfield of $K$

  • Context: MHB 
  • Thread starter Thread starter mathmari
  • Start date Start date
Click For Summary
SUMMARY

The discussion centers on proving that the set $F(S)$ is the smallest subfield of a field $K$ that contains a subfield $F$ and a non-empty subset $S$. The definition of $F(S)$ involves elements of the form $u = f(s_1, \dots, s_n)/g(s_1, \dots, s_n)$, where $f, g$ are polynomials in $F[x_1, \dots, x_n]$ and $g(s_1, \dots, s_n) \neq 0$. The participants confirm that $F(S)$ is a subring and an integral domain, thus establishing it as a subfield of $K$. Furthermore, they conclude that if $F \cup S \subseteq E$, then $F(S) \subseteq E$, affirming the minimality of $F(S)$ as a subfield.

PREREQUISITES
  • Understanding of field theory and subfields
  • Familiarity with polynomial functions and their properties
  • Knowledge of integral domains and their characteristics
  • Basic concepts of algebraic structures
NEXT STEPS
  • Study the properties of subfields in field theory
  • Learn about polynomial rings and their role in defining field extensions
  • Explore the concept of integral domains and their implications in algebra
  • Investigate examples of minimal subfields in various fields
USEFUL FOR

Mathematicians, algebraists, and students studying abstract algebra, particularly those interested in field theory and polynomial functions.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Let $F$ be a subfield of the field $K$ and $S$ a non-empty subset (not necessarily, subfield) of $K$, finite or infinite. Let $F(S)$ be the subset of $K$ that is defined as follows:
An element $u\in K$ is in $F(S)$ iff there are finitely many elements of $S$, say $s_1, \dots , s_n$, and polynomials with $n$ variables $f,g\in F[x_1, \dots , x_n]$, with $g(s_1, \dots , s_n)\neq 0$, so that $u=f(s_1, \dots , s_n)/g(s_1, \dots , s_n)$.

I want to show that $F(S)$ is a subfield of $K$ and even the smallest subfield of $K$, that contains $F$ and $S$. So, if $E$ is the subfield of $K$ and $F\cup S\subseteq E$, then $F(S)\subseteq E$. I have done the following:

$F(S)$ is a subring of $K$ :

We have that $a,b\in F(S)$ then $a=\frac{f_1(s_1, \dots , s_n)}{g_1(s_1, \dots , s_n)}$ and $b=\frac{f_2(s_1, \dots , s_n)}{g_2(s_1, \dots , s_n)}$.
Then $a\cdot b=\frac{f_1(s_1, \dots , s_n)f_2(s_1, \dots , s_n)}{g_1(s_1, \dots , s_n)g_2(s_1, \dots , s_n)}\in F(S)$ and $a-b=\frac{f_1(s_1, \dots , s_n)g_2(s_1, \dots , s_n)-f_2(s_1, \dots , s_n)g_1(s_1, \dots , s_n)}{g_1(s_1, \dots , s_n)g_2(s_1, \dots , s_n)}\in F(S)$.

Since $K$ is a field, it is also an integral domain and since $F(S)$ is a subring of $K$, $F(S)$ is also an integral domain.

We have that $F(S)$ is a subfield of $K$, since it is an integral domain and for each non-zero element $u\in F(S)$, $u=\frac{f(s_1, \dots , s_n)}{g(s_1, \dots , s_n)}$ there is its inverse, $u^{-1}=\frac{g(s_1, \dots , s_n)}{f(s_1, \dots , s_n)}$.
Let $E$ a subfield of $K$ and $F\cup S\subseteq E$.
The elements of $F(S)$ are of the form $\frac{f(s_1, \dots , s_n)}{g(s_1, \dots , s_n)}$. Since $F\cup S\subseteq E$ we have that $f(s_1, \dots , s_n)\in E$ and $g(s_1, \dots , s_n)\in E$. Since $E$ is a field we have that $\frac{f(s_1, \dots , s_n)}{g(s_1, \dots , s_n)}\in E$. Therefore, $F(S)\subseteq E$. Is everything correct? Could I improve something? (Wondering)
 
Physics news on Phys.org
mathmari said:
Hey! :o

Let $F$ be a subfield of the field $K$ and $S$ a non-empty subset (not necessarily, subfield) of $K$, finite or infinite. Let $F(S)$ be the subset of $K$ that is defined as follows:
An element $u\in K$ is in $F(S)$ iff there are finitely many elements of $S$, say $s_1, \dots , s_n$, and polynomials with $n$ variables $f,g\in F[x_1, \dots , x_n]$, with $g(s_1, \dots , s_n)\neq 0$, so that $u=f(s_1, \dots , s_n)/g(s_1, \dots , s_n)$.

I want to show that $F(S)$ is a subfield of $K$ and even the smallest subfield of $K$, that contains $F$ and $S$. So, if $E$ is the subfield of $K$ and $F\cup S\subseteq E$, then $F(S)\subseteq E$. I have done the following:

$F(S)$ is a subring of $K$ :

We have that $a,b\in F(S)$ then $a=\frac{f_1(s_1, \dots , s_n)}{g_1(s_1, \dots , s_n)}$ and $b=\frac{f_2(s_1, \dots , s_n)}{g_2(s_1, \dots , s_n)}$.
Then $a\cdot b=\frac{f_1(s_1, \dots , s_n)f_2(s_1, \dots , s_n)}{g_1(s_1, \dots , s_n)g_2(s_1, \dots , s_n)}\in F(S)$ and $a-b=\frac{f_1(s_1, \dots , s_n)g_2(s_1, \dots , s_n)-f_2(s_1, \dots , s_n)g_1(s_1, \dots , s_n)}{g_1(s_1, \dots , s_n)g_2(s_1, \dots , s_n)}\in F(S)$.

Since $K$ is a field, it is also an integral domain and since $F(S)$ is a subring of $K$, $F(S)$ is also an integral domain.

We have that $F(S)$ is a subfield of $K$, since it is an integral domain and for each non-zero element $u\in F(S)$, $u=\frac{f(s_1, \dots , s_n)}{g(s_1, \dots , s_n)}$ there is its inverse, $u^{-1}=\frac{g(s_1, \dots , s_n)}{f(s_1, \dots , s_n)}$.
Let $E$ a subfield of $K$ and $F\cup S\subseteq E$.
The elements of $F(S)$ are of the form $\frac{f(s_1, \dots , s_n)}{g(s_1, \dots , s_n)}$. Since $F\cup S\subseteq E$ we have that $f(s_1, \dots , s_n)\in E$ and $g(s_1, \dots , s_n)\in E$. Since $E$ is a field we have that $\frac{f(s_1, \dots , s_n)}{g(s_1, \dots , s_n)}\in E$. Therefore, $F(S)\subseteq E$. Is everything correct? Could I improve something? (Wondering)
This seems fine to me.
 
mathmari said:
Let $E$ a subfield of $K$ and $F\cup S\subseteq E$.
The elements of $F(S)$ are of the form $\frac{f(s_1, \dots , s_n)}{g(s_1, \dots , s_n)}$. Since $F\cup S\subseteq E$ we have that $f(s_1, \dots , s_n)\in E$ and $g(s_1, \dots , s_n)\in E$. Since $E$ is a field we have that $\frac{f(s_1, \dots , s_n)}{g(s_1, \dots , s_n)}\in E$. Therefore, $F(S)\subseteq E$.

I thought about it again and I got stuck right now...
Why do we have that $f(s_1, \dots , s_n), g(s_1, \dots , s_n) \in F\cup S$ ?
$f(s_1, \dots , s_n), g(s_1, \dots , s_n)$ are polynomials with coefficients in $F$. Are the variables then elements of $S$ ? (Wondering)
 
mathmari said:
Why do we have that $f(s_1, \dots , s_n), g(s_1, \dots , s_n) \in F\cup S$ ?

Or doesn't it stand? (Wondering)
 
caffeinemachine said:
This seems fine to me.

Thank you! (Yes)
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
1
Views
3K
Replies
1
Views
2K
  • · Replies 13 ·
Replies
13
Views
1K