MHB Show That $F(S)$ Is the Smallest Subfield of $K$

  • Thread starter Thread starter mathmari
  • Start date Start date
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Let $F$ be a subfield of the field $K$ and $S$ a non-empty subset (not necessarily, subfield) of $K$, finite or infinite. Let $F(S)$ be the subset of $K$ that is defined as follows:
An element $u\in K$ is in $F(S)$ iff there are finitely many elements of $S$, say $s_1, \dots , s_n$, and polynomials with $n$ variables $f,g\in F[x_1, \dots , x_n]$, with $g(s_1, \dots , s_n)\neq 0$, so that $u=f(s_1, \dots , s_n)/g(s_1, \dots , s_n)$.

I want to show that $F(S)$ is a subfield of $K$ and even the smallest subfield of $K$, that contains $F$ and $S$. So, if $E$ is the subfield of $K$ and $F\cup S\subseteq E$, then $F(S)\subseteq E$. I have done the following:

$F(S)$ is a subring of $K$ :

We have that $a,b\in F(S)$ then $a=\frac{f_1(s_1, \dots , s_n)}{g_1(s_1, \dots , s_n)}$ and $b=\frac{f_2(s_1, \dots , s_n)}{g_2(s_1, \dots , s_n)}$.
Then $a\cdot b=\frac{f_1(s_1, \dots , s_n)f_2(s_1, \dots , s_n)}{g_1(s_1, \dots , s_n)g_2(s_1, \dots , s_n)}\in F(S)$ and $a-b=\frac{f_1(s_1, \dots , s_n)g_2(s_1, \dots , s_n)-f_2(s_1, \dots , s_n)g_1(s_1, \dots , s_n)}{g_1(s_1, \dots , s_n)g_2(s_1, \dots , s_n)}\in F(S)$.

Since $K$ is a field, it is also an integral domain and since $F(S)$ is a subring of $K$, $F(S)$ is also an integral domain.

We have that $F(S)$ is a subfield of $K$, since it is an integral domain and for each non-zero element $u\in F(S)$, $u=\frac{f(s_1, \dots , s_n)}{g(s_1, \dots , s_n)}$ there is its inverse, $u^{-1}=\frac{g(s_1, \dots , s_n)}{f(s_1, \dots , s_n)}$.
Let $E$ a subfield of $K$ and $F\cup S\subseteq E$.
The elements of $F(S)$ are of the form $\frac{f(s_1, \dots , s_n)}{g(s_1, \dots , s_n)}$. Since $F\cup S\subseteq E$ we have that $f(s_1, \dots , s_n)\in E$ and $g(s_1, \dots , s_n)\in E$. Since $E$ is a field we have that $\frac{f(s_1, \dots , s_n)}{g(s_1, \dots , s_n)}\in E$. Therefore, $F(S)\subseteq E$. Is everything correct? Could I improve something? (Wondering)
 
Physics news on Phys.org
mathmari said:
Hey! :o

Let $F$ be a subfield of the field $K$ and $S$ a non-empty subset (not necessarily, subfield) of $K$, finite or infinite. Let $F(S)$ be the subset of $K$ that is defined as follows:
An element $u\in K$ is in $F(S)$ iff there are finitely many elements of $S$, say $s_1, \dots , s_n$, and polynomials with $n$ variables $f,g\in F[x_1, \dots , x_n]$, with $g(s_1, \dots , s_n)\neq 0$, so that $u=f(s_1, \dots , s_n)/g(s_1, \dots , s_n)$.

I want to show that $F(S)$ is a subfield of $K$ and even the smallest subfield of $K$, that contains $F$ and $S$. So, if $E$ is the subfield of $K$ and $F\cup S\subseteq E$, then $F(S)\subseteq E$. I have done the following:

$F(S)$ is a subring of $K$ :

We have that $a,b\in F(S)$ then $a=\frac{f_1(s_1, \dots , s_n)}{g_1(s_1, \dots , s_n)}$ and $b=\frac{f_2(s_1, \dots , s_n)}{g_2(s_1, \dots , s_n)}$.
Then $a\cdot b=\frac{f_1(s_1, \dots , s_n)f_2(s_1, \dots , s_n)}{g_1(s_1, \dots , s_n)g_2(s_1, \dots , s_n)}\in F(S)$ and $a-b=\frac{f_1(s_1, \dots , s_n)g_2(s_1, \dots , s_n)-f_2(s_1, \dots , s_n)g_1(s_1, \dots , s_n)}{g_1(s_1, \dots , s_n)g_2(s_1, \dots , s_n)}\in F(S)$.

Since $K$ is a field, it is also an integral domain and since $F(S)$ is a subring of $K$, $F(S)$ is also an integral domain.

We have that $F(S)$ is a subfield of $K$, since it is an integral domain and for each non-zero element $u\in F(S)$, $u=\frac{f(s_1, \dots , s_n)}{g(s_1, \dots , s_n)}$ there is its inverse, $u^{-1}=\frac{g(s_1, \dots , s_n)}{f(s_1, \dots , s_n)}$.
Let $E$ a subfield of $K$ and $F\cup S\subseteq E$.
The elements of $F(S)$ are of the form $\frac{f(s_1, \dots , s_n)}{g(s_1, \dots , s_n)}$. Since $F\cup S\subseteq E$ we have that $f(s_1, \dots , s_n)\in E$ and $g(s_1, \dots , s_n)\in E$. Since $E$ is a field we have that $\frac{f(s_1, \dots , s_n)}{g(s_1, \dots , s_n)}\in E$. Therefore, $F(S)\subseteq E$. Is everything correct? Could I improve something? (Wondering)
This seems fine to me.
 
mathmari said:
Let $E$ a subfield of $K$ and $F\cup S\subseteq E$.
The elements of $F(S)$ are of the form $\frac{f(s_1, \dots , s_n)}{g(s_1, \dots , s_n)}$. Since $F\cup S\subseteq E$ we have that $f(s_1, \dots , s_n)\in E$ and $g(s_1, \dots , s_n)\in E$. Since $E$ is a field we have that $\frac{f(s_1, \dots , s_n)}{g(s_1, \dots , s_n)}\in E$. Therefore, $F(S)\subseteq E$.

I thought about it again and I got stuck right now...
Why do we have that $f(s_1, \dots , s_n), g(s_1, \dots , s_n) \in F\cup S$ ?
$f(s_1, \dots , s_n), g(s_1, \dots , s_n)$ are polynomials with coefficients in $F$. Are the variables then elements of $S$ ? (Wondering)
 
mathmari said:
Why do we have that $f(s_1, \dots , s_n), g(s_1, \dots , s_n) \in F\cup S$ ?

Or doesn't it stand? (Wondering)
 
caffeinemachine said:
This seems fine to me.

Thank you! (Yes)
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
839
Replies
1
Views
2K
Replies
1
Views
3K
  • · Replies 13 ·
Replies
13
Views
1K