Show that gcd(a,b) is the smallest positive element in the set {ma+nb}

Click For Summary
SUMMARY

The discussion centers on proving that the greatest common divisor (gcd) of two integers \(a\) and \(b\) is the smallest positive element in the set \(\{ma + nb | m, n \in \mathbb{Z}\}\). It establishes that if \(a\) and \(b\) are relatively prime, then \(gcd(a, b) = 1\) is the smallest positive element. Conversely, if \(a\) and \(b\) are not relatively prime, the gcd can be expressed as \(c\), where \(c\) divides both \(a\) and \(b\), leading to the conclusion that \(c\) is the smallest positive element in the set. The proof utilizes properties of integers and the closure of \(\mathbb{Z}\) under addition and multiplication.

PREREQUISITES
  • Understanding of gcd and its properties in number theory
  • Familiarity with integers and the set of natural numbers
  • Knowledge of linear combinations of integers
  • Basic concepts of abelian groups
NEXT STEPS
  • Study the Euclidean algorithm for computing gcd
  • Explore the properties of linear combinations in number theory
  • Learn about the structure of abelian groups and their applications
  • Investigate the implications of Bézout's identity in relation to gcd
USEFUL FOR

Mathematicians, students of number theory, and anyone interested in understanding the properties of integers and their relationships through gcd.

docnet
Messages
796
Reaction score
486
Homework Statement
let ##a,b\in\mathbb{N}##. Show that ##gcd(a,b)## is the smallest positive element in the set ##\{ma+nb|m,n\in\mathbb{Z}\}##.
Relevant Equations
(1) If ##a## and ##b## are relatively prime, then tere are integers ##m## and ##n## such that ##ma+nb=1##

(2) If ##a>b## then ##gcd(a-b,b)=gcd(a,b)##
##m##, ##n##, ##a##, and ##b## are in ##\mathbb{Z}##. The set of natural numbers is an abelian group, so ##\{ma+nb|m,n\in\mathbb{Z}\}## is a subset of ##\mathbb{Z}##.

##a ## and ##b## are either relatively prime or not relatively prime.

If ##a ## and ##b## are relatively prime, then there are integers ##m## and ##n## such that ##ma+nb=1##. ##1## is the smallest positive element in ##\mathbb{Z}##. So, ##1## is the positive smallest positive element in ##\{ma+nb|m,n\in\mathbb{Z}\}##.

If ##a ## and ##b## are not relatively prime, then there is an integer ##c## that commonly divides ##a## and ##b##. So ##a=\tilde{a}c## and ##b=\tilde{b}c##, where ##\tilde{a}## and ##\tilde{b}## are relatively prime integers.
\begin{align}ma+nb=&m\tilde{a}c+n\tilde{b}c\\
=&c(m\tilde{a}+n\tilde{b})\end{align}
##\tilde{a}## and ##\tilde{b}## are relatively prime, so there exist integers ##m## and ##n## such that ##m\tilde{a}+n\tilde{b}=1##, And because they are relatively prime, ##gcd(\tilde{a},\tilde{b})=1##,
\begin{align}=& c\cdot gcd(\tilde{a},\tilde{b})=gcd(a,b)=c\end{align}
##1## is the smallest positive element in ##\{m\tilde{a}+n\tilde{b}|m,n\in\mathbb{Z}\}## so
##c\cdot 1 =gcd(a,b)## is the smallest positive element in ##c\cdot \{m\tilde{a}+n\tilde{b}|m,n\in\mathbb{Z}\}=\{ma+nb|m,n\in\mathbb{Z}\}##.
 
Physics news on Phys.org
docnet said:
Homework Statement:: let ##a,b\in\mathbb{N}##. Show that ##gcd(a,b)## is the smallest positive element in the set ##\{ma+nb|m,n\in\mathbb{Z}\}##.
Relevant Equations:: (1) If ##a## and ##b## are relatively prime, then tere are integers ##m## and ##n## such that ##ma+nb=1##

(2) If ##a>b## then ##gcd(a-b,b)=gcd(a,b)##

The set of natural numbers is an abelian group
Under what addition?
docnet said:
If a and b are not relatively prime, then there is an integer c that commonly divides a and b.
Later the proof says ##c = \gcd(a, b)##.

What are ##m, n## in line (1)?
docnet said:
so there exist integers m and n such that ma~+nb~=1,
are these the same ##m, n## as before?Hint: Let ##ma + nb## be an arbitrary positive element in ##\lbrace xa + yb \vert x, y \in \mathbb{Z} \rbrace## and define ##d = \gcd(a, b)##. Then ##d \vert ma + nb##. (why?).
 
  • Like
Likes   Reactions: docnet
fishturtle1 said:
Under what addition?
Oh no. The correct statement was "The set ##\mathbb{Z}## is closed under multiplication and addition, so the element ##ma+nb## for any ##a,b,n,m\in\mathbb{Z}## is also in ##\mathbb{Z}##.

fishturtle1 said:
Later the proof says ##c = \gcd(a, b)##.
I am confused. Is this not true when ##a## and ##b## are not co-prime?
fishturtle1 said:
are these the same ##m, n## as before?
No. They are different integers than before.
fishturtle1 said:
Hint: Let ##ma + nb## be an arbitrary positive element in ##\lbrace xa + yb \vert x, y \in \mathbb{Z} \rbrace## and define ##d = \gcd(a, b)##. Then ##d \vert ma + nb##. (why?).
Okay, I will try to come up with the correct solution using this hint. Thank you.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 24 ·
Replies
24
Views
6K
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K