Show that r is repeated root for characteristic equation iff

catsarebad
Messages
69
Reaction score
0

Homework Statement


A:B→B a linear operator

Show r is multiple root for minimal polynomial u(x) iff

>$$\{0\}\subset \ker(A - rI) \subset \ker(A - rI)^2$$

note: it is proper subset

Homework Equations



The Attempt at a Solution


Homework Statement



My thought:

I know ker(A−rI) is basically {{0} and {eigenvectors associated with r}}.

what is ker((A−rI)^2) with respect to above and/or r? How is eigenvector of (A−rI)^2 related to that of (L−rI)?
 
Last edited:
Physics news on Phys.org
Have you ever heard of a generalized eigenvector?

http://en.wikipedia.org/wiki/Generalized_eigenvector

Suppose v is an eigenvector corresponding corresponding to r. If you could find a vector v2 such that (A - rI) v2 = v. Then:

(A - rI)2 v2 = (A - rI) v = 0​

So v2 \in ker( (A - rI)2). But v2 \notin ker(A - rI).

See if you can use the fact that (x-r)2 divides the minimal polynomial to show that such a v2 exists.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top