(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

Let ##V## and ##W## be vector spaces, ##T : V \rightarrow W## a linear transformation and ##B \subset Im(T)## a subspace.

(a) Prove that ##A = T^{-1}(B)## is the only subspace of ##V## such that ##Ker(T) \subseteq A## and ##T(A) = B##

(b) Let ##C \subseteq V## be a subspace. Prove that ##A = Ker(T) \oplus C## iff ##T(C) = B## and ##T|_C## is injective.

The attempt at a solution

Per usual, I'm stuck on the notation here, but I think I have an idea about where the proof comes from, at least in the first part.

To organize my information, I know the following:

##A## is a subspace of ##V## and thus meets all criteria for being a subspace.

##A = T^{-1}(B) | T^{-1} : W \rightarrow V##

As T is invertible, we can deduce that T is bijective as a function and thus both onto and one-to-one, and also that ##V \cong W##. [I have this proof from my notes and previous work]

I also have the definition of kernel and the proof relating it to the transformation's injectivity, also from a previous exercise.

Now, defining the kernel of ##T## :

##Ker(T) = \{v \in V : T(v) = 0\} = T^{-1} (\{0\})##

##T^{-1} (\{0\}) \in T^{-1} \rightarrow Ker(T) \subseteq A##

I can prove that more formally, but does the spirit of the exercise even go in that direction? Similarly, is it using the injectivity from ##Ker(T)## that I prove ##T(A) = B## or can I use the definition of ##T^{-1}## to show that if I apply ##T## to ##T^{-1}(w)## I obtain ##\{w\}## and then use injectivity?

I''ll try to work out the second half of the exercise after the first. What exactly does the notation ##T|_C## mean?

Thanks as always for any and all assistance.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: [Linear Algebra] Linear transformation proof

Have something to add?

Draft saved
Draft deleted

**Physics Forums | Science Articles, Homework Help, Discussion**