Show that the energy is conserved in this field/metric

  • Thread starter Thread starter LCSphysicist
  • Start date Start date
  • Tags Tags
    Energy
LCSphysicist
Messages
644
Reaction score
162
Homework Statement
...
Relevant Equations
...
1614783348225.png

I would like it very much if someone could give a hint on how to start this question.

In particular, I tried to find the derivative of energy with respect to time, but that was not enough.
Then I tried to apply the formula p * p = -m², but that also didn't get me anywhere.
These were my two attempts, I imagine there is another way but I haven't been able to find it yet

This is the metric:
1614783555247.png


The "magnetic charge" P is zero, at least i think so.

I thought in another way, try to find any Killing vector and see its relation with the energy, but i am not sure if this is will be helpful
 
Physics news on Phys.org
I admire your modesty in putting this under "introductory" physics homework!
 
  • Like
Likes Steve4Physics and Vanadium 50
PeroK said:
I admire your modesty in putting this under "introductory" physics homework!
Moved.
 
Herculi said:
Homework Statement:: ...
View attachment 279056
This problem is from Sean Carroll's textbook.
I thought in another way, try to find any Killing vector and see its relation with the energy, but i am not sure if this is will be helpful.
Yes, there is a Killing vector or isometry that is relevant to this problem.

Review section 3.8 on symmetries and Killing vectors. Equations (3.161), (3.162), (3.167) and (3.168) in this section are for particles following geodesics. How would these equations be modified if the geodesic equation [(3.44) or (3.161)] is replaced by equation (6.122) in the problem statement?
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top