studentxlol
- 40
- 0
Homework Statement
Show that the gradient of the curve \frac{a}{x}+\frac{b}{y}=1 is -\frac{ay^2}{bx^2}. The point (p,q) lies on both the straight line ax+by=1[/tex] and \frac{a}{x}+\frac{b}{y}=1 where ab =/= 0. Given that, at this point, the line and the curve have the same gradient, show that p=±q.<br /> <br /> <br /> <h2>The Attempt at a Solution</h2><br /> <br /> \frac{a}{x}+\frac{b}{y}=1<br /> <br /> \frac{dy}{dx}=-ax^{-2}-by^{-2}<br /> <br /> -\frac{b}{y^2}\frac{dy}{dx}=\frac{a}{x^2} <br /> <br /> \frac{dy}{dx}=-\frac{ay^2}{bx^2}<br /> <h2>Homework Statement </h2><br /> <br /> Not sure how to calculate the next part.. <br /> <br /> <br /> <br /> <h2>Homework Equations</h2><br /> <br /> <br /> <br /> <h2>The Attempt at a Solution</h2>