Show that the metric tensor is independent of coordinate choice

Click For Summary

Homework Help Overview

The discussion revolves around the independence of the metric tensor from the choice of coordinate systems, specifically in the context of tensor analysis and linear algebra. Participants are exploring properties of transformations between rectangular coordinate systems and their implications for the metric tensor.

Discussion Character

  • Exploratory, Mathematical reasoning, Assumption checking

Approaches and Questions Raised

  • The original poster attempts to leverage properties of orthogonal transformations and the chain rule to establish the independence of the metric tensor. Some participants suggest using matrix representations of the transformations to clarify relationships between derivatives.

Discussion Status

Participants are actively engaging with the problem, with some offering suggestions that guide the original poster's reasoning. There is a constructive exchange of ideas, and while the original poster expresses uncertainty, the discussion is progressing towards a clearer understanding of the relationships involved.

Contextual Notes

The original poster notes that this is not a homework problem but is seeking clarification on concepts from a textbook on tensors. This context may influence the depth of exploration and the nature of the questions raised.

PrecPoint
Messages
15
Reaction score
3
Homework Statement
Let [itex]\overline{x^j}, \overline{\overline{x^j}} [/itex] denote the coordinates of an arbitrary point P of [itex]E_n[/itex] referred to two distinct rectangular coordinate systems. An arbitrary curvlinear system in [itex]E_n[/itex] is related to the two rectangular systems according to:
Relevant Equations
[itex]\overline{x^j}=\overline{x^j}(x^h),\qquad \overline{\overline{x^j}}=\overline{\overline{x^j}}(x^h)[/itex]

Show that:

[tex]\frac{\partial{\overline{x^j}}}{\partial{x^h}} \frac{\partial{\overline{x^j}}}{\partial{x^k}}=\frac{\partial{\overline{\overline{x^j}}}}{\partial{x^h}} \frac{\partial{\overline{\overline{x^j}}}}{\partial{x^k}}[/tex]
I need to use some property of the relalation between the coordinate systems to prove that g_{hk} is independent of the choice of the underlying rectangular coordinate system.

I will try to borrow an idea from basic linear algebra. I expect any transformation between the rectangular systems to be orthogonal and hence should be able to use orthogonality. To illustrate my idea, I expect something along these lines (in linear algebra pseudocode):

\overline{\overline{x}}=A\overline{x},\quad A^TA=I,\quad (AJ)^T(AJ)=J^TA^TAJ=J^TJ

Lets try:

\overline{x}^j=\frac{\partial{\overline{x^j}}}{\partial{\overline{\overline{x^m}}}}\overline{\overline{x^m}}

Now the part where I get stuck

\frac{\partial{\overline{x^j}}}{\partial{x^h}}=\frac{\partial{^2\overline{x^j}}}{\partial{x^h}\partial{\overline{\overline{x^m}}}}\overline{\overline{x^m}}+\frac{\partial{\overline{x^j}}}{\partial{\overline{\overline{x^m}}}}\frac{\partial{\overline{\overline{x^m}}}}{\partial{x^h}}

And likewise for the other factor. But a) I am very unsure of the derivates (this is my first tensor problem) and b) there is no easy identity- or delta quantity to be found. I suspect I am on the wrong track :(

Edit: btw, this is not a homework problem, but posted here anyway since there were no other suitable place to be found. The problem is from the book on Tensors by Lovelock and Rund
 
Last edited by a moderator:
Physics news on Phys.org
Welcome to PF!

Suggestions:

Use ##\overline{\overline{x}}=A\overline{x}## to show that ##\large \frac{\partial{\overline{\overline{x^j}}}}{\partial{\overline{x^r}}}## is a particular matrix element of ##A##.

Use the chain rule to express ##\large \frac{\partial{\overline{\overline{x^j}}}}{\partial{x^h}} ## in terms of partial derivatives of ##\overline{\overline{x^j}}## with respect to the ##\overline{x^r}##'s and the partial derivatives of the ##\overline{x^r}##'s with repsect to ##x^h##
 
  • Like
Likes   Reactions: PrecPoint
Thank you very much TSny!

Using your suggestions I first thought about "matrix A" which should be:

A_{jr}=\frac{\partial\overline{\overline{x^j}}}{\partial{\overline{x^r}}}

Now, using my analogy A^TA=I (the transformation is orthogonal) we note that:

\frac{\partial\overline{\overline{x^j}}}{\partial{\overline{x^r}}}\frac{\partial\overline{\overline{x^j}}}{\partial{\overline{x^t}}}=\delta_{rt}

\frac{\partial\overline{\overline{x^j}}}{\partial{x^h}}=<br /> \frac{\partial\overline{\overline{x^j}}}{\partial{\overline{x^r}}}\frac{\partial\overline{x^r}}{\partial{{x^h}}},\quad \frac{\partial\overline{\overline{x^j}}}{\partial{x^k}}=<br /> \frac{\partial\overline{\overline{x^j}}}{\partial{\overline{x^t}}}\frac{\partial\overline{x^t}}{\partial{{x^k}}}<br />

Applying this to the RHS of the original statement:

\frac{\partial\overline{\overline{x^j}}}{\partial{x^h}}\frac{\partial\overline{\overline{x^j}}}{\partial{x^k}}=\frac{\partial\overline{\overline{x^j}}}{\partial{\overline{x^r}}}\frac{\partial\overline{x^r}}{\partial{x^h}}\frac{\partial\overline{\overline{x^j}}}{\partial{\overline{x^t}}}\frac{\partial\overline{x^t}}{\partial{x^k}}=\delta_{rt}\frac{\partial\overline{x^r}}{\partial{x^h}}\frac{\partial\overline{x^t}}{\partial{x^k}}=\frac{\partial\overline{x^t}}{\partial{x^h}}\frac{\partial\overline{x^t}}{\partial{x^k}}

Which is what we wanted.
 
Looks good!
 

Similar threads

Replies
5
Views
4K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K