Show that the point satisfies the conditions

  • Context: MHB 
  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Conditions Point
Click For Summary
SUMMARY

The discussion focuses on demonstrating that a point on a round membrane in space, defined by the conditions \(x^2 + y^2 \leq a^2\) and a maximum \(z\) coordinate of \(b\), satisfies the cylindrical coordinate constraints \(0 \leq r \leq a\), \(0 \leq \theta \leq 2\pi\), and \(|z| \leq b\). Participants clarify that the maximum \(z\) coordinate is derived from the function \(z = f(x, y)\) with the domain \(x^2 + y^2 \leq a\). The absolute value notation \(|\max_{x^2+y^2 \leq a} f(x,y)| = b\) is emphasized as a more accurate representation of the maximum size of the coordinate.

PREREQUISITES
  • Cylindrical coordinates and their definitions
  • Understanding of functions and their maximum values
  • Basic knowledge of inequalities and absolute values
  • Familiarity with the concept of membranes in mathematical contexts
NEXT STEPS
  • Explore the properties of cylindrical coordinates in depth
  • Study the concept of maxima and minima in multivariable calculus
  • Learn about the implications of absolute values in mathematical expressions
  • Investigate the applications of membrane models in physics and engineering
USEFUL FOR

Students and professionals in mathematics, particularly those studying calculus and geometry, as well as engineers and physicists working with membrane models and coordinate systems.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

A round membrane in space, is over the space $x^2+y^2 \leq a^2$.

The maximum coordinate $z$ of a point of the membrane is $b$.

We suppose that $(x, y, z)$ is a point of the inclined membrane.

Show that the respective point $(r , \theta , z)$ in cylindrical coordinates satisfies the conditions $$0 \leq r \leq a \ , \ \ 0 \leq \theta \leq 2 \pi \ , \ \ |z| \leq b$$
Could you give me some hints how we could show that??
 
Physics news on Phys.org
I have done the following:

Using cylindrical coordinates we get $r=\sqrt{x^2+y^2}=\leq |a|$ and sonve $r \geq 0$ we have $0 \leq r \leq a$.

From the definition of cylindrincal coordinates we have that $0 \leq \theta \leq 2 \pi$,

But how do we get that $|z| \leq b$??(Wondering) By the sentence "The maximum coordinate $z$ of a point of the membrane is $b$" ?? (Wondering)
 
Hey! (Smile)

mathmari said:
I have done the following:

Using cylindrical coordinates we get $r=\sqrt{x^2+y^2}=\leq |a|$ and sonve $r \geq 0$ we have $0 \leq r \leq a$.

From the definition of cylindrincal coordinates we have that $0 \leq \theta \leq 2 \pi$,

Good! :)
But how do we get that $|z| \leq b$??(Wondering) By the sentence "The maximum coordinate $z$ of a point of the membrane is $b$" ?? (Wondering)

The sentence "The maximum coordinate $z$ of a point of the membrane is $b$" means the following.
Suppose we have a point on the membrane with coordinate $z$.
Then the size of that coordinate $z$ has a maximum of $b$.

Let the membrane be given by some function $f$ such that:
$$z=f(x,y)$$
with a domain given by $x^2+y^2\le a$.

Then:
$$\text{The maximum (size of the) coordinate z} = |\max_{x^2+y^2\le a} z| = |\max_{x^2+y^2\le a} f(x,y)| = b$$
 
I like Serena said:
The sentence "The maximum coordinate $z$ of a point of the membrane is $b$" means the following.
Suppose we have a point on the membrane with coordinate $z$.
Then the size of that coordinate $z$ has a maximum of $b$.

Let the membrane be given by some function $f$ such that:
$$z=f(x,y)$$
with a domain given by $x^2+y^2\le a$.

Then:
$$\text{The maximum (size of the) coordinate z} = |\max_{x^2+y^2\le a} z| = |\max_{x^2+y^2\le a} f(x,y)| = b$$

I haven't understood why it stands that $|\max_{x^2+y^2\le a} f(x,y)| = b$ and not $\max_{x^2+y^2\le a} f(x,y) = b$. Could you explain it to me ?? (Wondering)
 
mathmari said:
I haven't understood why it stands that $|\max_{x^2+y^2\le a} f(x,y)| = b$ and not $\max_{x^2+y^2\le a} f(x,y) = b$. Could you explain it to me ?? (Wondering)

It's sloppy usage of the wording "maximum coordinate".
Apparently what is intended is the "maximum size of a coordinate" or the "magnitude of a coordinate" or the "absolute value of a coordinate". (Nerd)
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 22 ·
Replies
22
Views
3K
Replies
2
Views
1K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K