Show that there is a basis C of V so that C* = Λ

  • Context: MHB 
  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Basis
Click For Summary

Discussion Overview

The discussion revolves around the existence of a basis \( C \) of a vector space \( V \) such that the dual basis \( C^{\star} \) corresponds to a given basis \( \Lambda \) of the dual space \( V^{\star} \). Participants explore the relationships between transformation matrices of bases and their duals, focusing on the mathematical properties of these transformations.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • Some participants assert that the transformation matrix \( A \) from the dual basis \( B^{\star} \) to \( C^{\star} \) is given by \( A = (S^{-1})^T \), where \( S \) is the transformation matrix from basis \( B \) to \( C \).
  • There is a proposal to construct a transformation matrix \( M \) from \( B^{\star} \) to \( \Lambda \) and to explore whether \( M = (S^{-1})^T \) holds for the specific basis \( C^{\star} \).
  • Participants discuss the existence of the transformation matrix \( M \) and provide reasoning that every basis vector in \( C \) can be expressed uniquely in terms of basis vectors in \( B \).
  • Some participants suggest that if \( M \) exists, then a basis \( C \) can be found such that \( C^{\star} = \Lambda \), leading to further exploration of the implications of this construction.
  • There is uncertainty about whether the proposed constructions and relationships hold universally or are specific to certain bases.

Areas of Agreement / Disagreement

Participants generally agree on the mathematical relationships involving transformation matrices and dual bases, but there is ongoing debate regarding the conditions under which these relationships hold and the implications of constructing specific bases.

Contextual Notes

Participants express uncertainty regarding the assumptions necessary for the existence of transformation matrices and the specific conditions under which the proposed relationships are valid.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Let $K$ be a field and $V$ a $n$-dimensional $K$-vector space with basis $B=\{b_1, \ldots , b_n\}$. $V^{\star}$ is the dual space of $V$. $B^{\star}$ is the dual basis corresponding to $B$ of $V^{\star}$.

  1. Let $C=\{c_1, \ldots , c_n\}$ be an other basis of $V$ and $C^{\star}$ its dual basis. Let $S=(s_{ij})_{1\leq i,j\leq n}$ be the transformation matrix of basis from $B$ to $C$, i.e. $\displaystyle{c_j=\sum_{i=1}^ns_{ij}b_i}$ for $j\in \{1, \ldots , n\}$.
    Show that $(S^{-1})^T=:A=(a_{ij})_{1\leq i,j\leq n}$ is the transformation matrix of basis from $B^{\star}$ to $C^{\star}$ i.e. that $\displaystyle{c_j^{\star}=\sum_{i=1}^na_{ij}b_i^{\star}}$ for $j\in \{1, \ldots , n\}$.
  2. Let $\Lambda=\{\lambda_1, \ldots , \lambda_n\}$ a basis of the dual space $V^{\star}$.
    Show that there is a basis $C$ of $V$ so that $C^{\star}=\Lambda$.
I have done the following:
  1. We have that $A$ is the transformation matrix of basis from $B^{\star}$ to $C^{\star}$, i.e., that $\displaystyle{c_j^{\star}=\sum_{i=1}^na_{ij}b_i^{\star}}$ and we want to show that the transformation matrix is equal to $A:=\left (S^{-1}\right )^T$, right? (Wondering)

    We have the following:
    \begin{equation*}c_j^{\star}(c_k)=c_j^{\star}\left (\sum_{i=1}^{n}s_{ik}b_i\right )\ \overset{ c_j^{\star} \text{ linearform }}{ = } \ \sum_{i=1}^{n}s_{ik}c_j^{\star}\left (b_i\right )=\sum_{i=1}^{n}s_{ik}\sum_{\lambda=1}^na_{\lambda j}b_{\lambda}^{\star}(b_i)=\sum_{i=1}^{n}s_{ik}\sum_{\lambda=1}^na_{\lambda j}\delta_{\lambda i}=\sum_{i=1}^{n}s_{ik}a_{i j}\end{equation*}

    From that we get $\displaystyle{\sum_{i=1}^{n}s_{ik}a_{i j}=\delta_{jk}}$, since $c_j^{\star}(c_k)=\delta_{jk}$.

    From $\displaystyle{\sum_{i=1}^{n}a_{i j}s_{ik}=\delta_{jk}}$ it follows that $\displaystyle{\sum_{i=1}^{n}a_{ji}^Ts_{ik}=\delta_{jk}}$.

    Since $\delta_{jk}=\begin{cases}1 & \text{ if } i=k \\0 & \text{ otherwise } \end{cases}$ it follows that we get the identity matrix.

    So we get $A^T\cdot S=I_n$.

    Therefore we have that \begin{equation*}A^T=S^{-1}\Rightarrow \left (A^T\right )^T=\left (S^{-1}\right )^T\Rightarrow A=\left (S^{-1}\right )^T\end{equation*}


    Is everything correct? (Wondering)
  2. Could you give me a hint for that? (Wondering)

    Do we maybe do the following?

    Let $M$ the transformation matrix of basis from $B^{\star}$ to $\Lambda$.
    Then do we get from the first question that $M=\left (S^{-1}\right )^T$ ? Or does this only hold for the specific basis $C^{\star}$ ?

    (Wondering)
 
Physics news on Phys.org
mathmari said:
I have done the following:
  1. We have that $A$ is the transformation matrix of basis from $B^{\star}$ to $C^{\star}$, i.e., that $\displaystyle{c_j^{\star}=\sum_{i=1}^na_{ij}b_i^{\star}}$ and we want to show that the transformation matrix is equal to $A:=\left (S^{-1}\right )^T$, right? (Wondering)

    We have the following:
    \begin{equation*}c_j^{\star}(c_k)=c_j^{\star}\left (\sum_{i=1}^{n}s_{ik}b_i\right )\ \overset{ c_j^{\star} \text{ linearform }}{ = } \ \sum_{i=1}^{n}s_{ik}c_j^{\star}\left (b_i\right )=\sum_{i=1}^{n}s_{ik}\sum_{\lambda=1}^na_{\lambda j}b_{\lambda}^{\star}(b_i)=\sum_{i=1}^{n}s_{ik}\sum_{\lambda=1}^na_{\lambda j}\delta_{\lambda i}=\sum_{i=1}^{n}s_{ik}a_{i j}\end{equation*}

    From that we get $\displaystyle{\sum_{i=1}^{n}s_{ik}a_{i j}=\delta_{jk}}$, since $c_j^{\star}(c_k)=\delta_{jk}$.

    From $\displaystyle{\sum_{i=1}^{n}a_{i j}s_{ik}=\delta_{jk}}$ it follows that $\displaystyle{\sum_{i=1}^{n}a_{ji}^Ts_{ik}=\delta_{jk}}$.

    Since $\delta_{jk}=\begin{cases}1 & \text{ if } i=k \\0 & \text{ otherwise } \end{cases}$ it follows that we get the identity matrix.

    So we get $A^T\cdot S=I_n$.

    Therefore we have that \begin{equation*}A^T=S^{-1}\Rightarrow \left (A^T\right )^T=\left (S^{-1}\right )^T\Rightarrow A=\left (S^{-1}\right )^T\end{equation*}

Hey mathmari!

It seems correct to me. (Nod)

mathmari said:
2. Could you give me a hint for that? (Wondering)

Do we maybe do the following?

Let $M$ the transformation matrix of basis from $B^{\star}$ to $\Lambda$.
Then do we get from the first question that $M=\left (S^{-1}\right )^T$ ? Or does this only hold for the specific basis $C^{\star}$ ?

Isn't it that we can rather construct $S = (M^{-1})^T$ by the reverse argument of the first question? (Wondering)

$M$ must exist since $V^*$ is a vector space.
And with the constructed $S$ we can find a basis $C$ in $V$ that is the dual of $\Lambda$. (Thinking)
 
I like Serena said:
Isn't it that we can rather construct $S = (M^{-1})^T$ by the reverse argument of the first question? (Wondering)

$M$ must exist since $V^*$ is a vector space.
And with the constructed $S$ we can find a basis $C$ in $V$ that is the dual of $\Lambda$. (Thinking)

Why must $M$ exist? Could you explain it further to me? (Wondering)

So $M$ is the transformation matrix of basis from $B^{\star}$ to $\Lambda$.

Let $S:=(M^{-1})^T$.

Let $C$ be the basis that we get by the transformation matrix $S$ from the basis $B$.

From the first question we have then that $\left (S^{-1}\right )^T$ is the transformation matrix of basis from the dual basis $B^{\star}$ to the dual basis $C^{\star}$. Since $\left (S^{-1}\right )^T=M$ and $M$ is the transformation matrix from $B^{\star}$ to $\Lambda$, it follows that $\Lambda=C^{\star}$. Is everything correct? Could we improve something? (Wondering)
 
mathmari said:
Why must $M$ exist? Could you explain it further to me?

Lemma: The matrix for the transformation of a basis B to a basis C in a vector space must exist.
Proof: Observe that every basis vector in C must have a unique linear representation of basis vectors in B.
When we combine those linear representations into a matrix we have the matrix for the basis transformation. (Nerd)

mathmari said:
So $M$ is the transformation matrix of basis from $B^{\star}$ to $\Lambda$.

Let $S:=(M^{-1})^T$.

Let $C$ be the basis that we get by the transformation matrix $S$ from the basis $B$.

From the first question we have then that $\left (S^{-1}\right )^T$ is the transformation matrix of basis from the dual basis $B^{\star}$ to the dual basis $C^{\star}$. Since $\left (S^{-1}\right )^T=M$ and $M$ is the transformation matrix from $B^{\star}$ to $\Lambda$, it follows that $\Lambda=C^{\star}$.

Is everything correct? Could we improve something?

It looks fine to me. (Nod)
 

Similar threads

  • · Replies 23 ·
Replies
23
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K