Show |x^2 sin^8(e^x)| <= (16 pi^3)/3

  • Thread starter Thread starter fishturtle1
  • Start date Start date
Click For Summary
SUMMARY

The discussion centers on proving the inequality $$|x^2 \sin^8(e^x)| \le \frac{16\pi^3}{3}$$ over the interval $$[-2\pi, 2\pi]$$. Participants utilize Theorem 33.5 and Theorem 33.6 to establish bounds on the integral of $$x^2 \sin^8(e^x)$$. The final conclusion confirms that the absolute value of the integral is indeed less than or equal to $$\frac{16\pi^3}{3}$$, leveraging the properties of even functions and the Riemann integral definition.

PREREQUISITES
  • Understanding of Riemann integrals and partitions
  • Familiarity with properties of even functions
  • Knowledge of Theorems 33.5 and 33.6 related to integrals
  • Basic calculus, specifically integration techniques
NEXT STEPS
  • Study the Riemann integral definition and its applications
  • Explore the properties of even and odd functions in calculus
  • Review Theorems related to integral bounds and convergence
  • Learn about the Fundamental Theorem of Calculus and its implications
USEFUL FOR

Mathematics students, calculus instructors, and anyone interested in integral inequalities and the properties of trigonometric functions in integration.

fishturtle1
Messages
393
Reaction score
82
Homework Statement
Show ##\vert \int_{-2\pi}^{2\pi} x^2 \sin^8(e^x) \vert \le \frac{16\pi^3}{3}##
Relevant Equations
From previous example, ##\int_{0}^{b} x^2 dx = \frac{b^3}{3}## where ##b > 0##.

##M(f, S) = \sup\lbrace f(x) : x \in S \rbrace##
##m(f, S) = \inf\lbrace f(x) : s \in S \rbrace##

##U(f) = \inf\lbrace M(f, P) : \text{P is a partition of [a, b]} \rbrace##
##L(f) = \sup\lbrace m(f, P) : \text{P is a partition of [a, b]} \rbrace##

We say ##f## is integrable on ##[a,b]## if ##U(f) = L(f)## in which case ##\int_a^b f = U(f)##.

Theorem 33.5: If ##f## is integrable on ##[a,b]##, then ##\vert f \vert## is integrable on ##[a,b]## and $$\vert \int_a^b f \vert \le \int_a^b \vert f \vert$$

Theorem 33.6. Let ##f## be a function defined on ##[a,b]##. If ##a < c < b## and ##f## is integrable on ##[a,c]## and ##[c,b]##, then ##f## is integrable on ##[a,b]## and

$$\int_a^b f = \int_a^c f + \int_c^b f$$
##\textbf{Attempt at solution:}## By theorem 33.5., $$\vert \int_{-2\pi}^{2\pi} x^2\sin^8(e^x) dx \vert \le \int_{-2\pi}^{2\pi} \vert x^2\sin^8(e^x) \vert dx $$ $$= \int_{-2\pi}^{2\pi} \vert x^2 \vert \vert \sin^8(e^x) \vert dx$$ $$\le \int_{-2\pi}^{2\pi} \vert x^2 \vert dx = \int_{-2\pi}^{2\pi} x^2 dx$$

By theorem 33.6, we have

$$\int_{-2\pi}^{2\pi} x^2 dx = \int_{-2\pi}^0 x^2 dx + \int_0^{2\pi}x^2 dx$$

By example 2, we have $$\int_0^{2\pi} x^2 dx = \frac{8\pi^3}{3}$$

Now I try to mimic example 2 to evaluate the other integral, but I'm stuck: Let ##P = \lbrace -2\pi = t_0 < t_1 < \dots < t_n = 0 \rbrace## be a partition of ##[-2\pi, 0]##. We have $$U(x^2, P) = \sum_{k=1}^{n} M(x^2, [t_{k-1}, t_k])\cdot(t_k - t_{k-1}) = \sum_{k=1}^n (t_{k-1})^2\cdot(t_k - t_{k-1})$$

Setting ##t_k = \frac{k(-2\pi)}{n}## we get $$U(f, P) = \sum_{k=1}^n \frac{(k-1)^24\pi^2}{n^2} \frac{(-2\pi)}{n} = -\frac{8\pi^3}{n^3}\sum_{k=1}^n (k-1)^2$$
$$ = -\frac{8\pi^3}{n^3} \cdot \frac 16 (n-1)(n)(2(n-1) + 1) = -\frac{8\pi^3}{n^3}\cdot(2n^3 - 3n^2 + n) \le -\frac{8\pi^3}{3}$$

I was expecting to get ##U(x^2, P) \ge \frac{8\pi^3}{3}## and then could somehow argue ##U(x^2) = \frac{8\pi^3}{3}## but I'm not sure where to go from here.
 
  • Like
Likes   Reactions: member 587159
Physics news on Phys.org
Use that $$\int_{-a}^a f = 2\int_0^a f$$
if ##f## is an even function (exercise if you haven't proven already).
 
  • Informative
Likes   Reactions: fishturtle1
Math_QED said:
Use that $$\int_{-a}^a f = 2\int_0^a f$$
if ##f## is an even function (exercise if you haven't proven already).

Let ##f## be an even function that is integrable on ##[0,a]##. By definition of even, for all ##x##, ##f(-x) = f(x)##. Let ##S \subset \mathbb{R}## and ##-S = \lbrace -s : s \in S \rbrace##. Then ##\sup\lbrace f(x) : x \in S \rbrace = \sup \lbrace f(x) : x \in -S \rbrace##.

Let ##P = \lbrace 0 = t_0 < t_1 < \dots < t_n = a\rbrace## be any partition of ##[0,a]##. Consider the partition ##-P = \lbrace 0 = -t_0 > -t_1 > \dots > -t_n = -a \rbrace##. Then,

$$U(f, P) = \sum_{k=0}^{n-1} M(f, [t_k, t_k+1]) \cdot (t_{k+1} - t_k)$$
$$ = \sum_{k=0}^{n-1} M(f, [-t_{k+1}, -t_k]) \cdot (-t_k - (-t_{k+1})) $$
$$ = U(x^2, -P)$$

Similarly, for any partition ##Q## of ##[-a, 0]##, we have ##U(f, Q) = U(f, -Q)##. It follows ##\inf\lbrace U(f, P) : \text{P is a partition of [0, a]}\rbrace = \inf\lbrace U(f, Q) : \text{Q is a partition of [-a, 0]} \rbrace##. So ##U(f)## on ##[0,a]## is the same as ##U(f)## on ##[-a, 0]##. By similar reasoning, ##L(f)## on ##[0,a]## is the same as ##L(f)## on ##[-a, 0]##. We can conclude
$$\int_{-a}^a f = \int_{-a}^0 f + \int_0^a f = 2\int_0^a f$$ []

------------

Back to the original problem, (using what we already had in OP), we have

$$\vert \int_{-2\pi}^{2\pi} x^2 \sin^8(e^x) dx \vert \le \int_{-2\pi}^{2\pi} x^2dx = 2 \int_0^{2\pi}x^2dx = 2\cdot \frac{8\pi^3}{3} = \frac{16\pi^3}{3}$$
which is what we wanted. []
 
  • Like
Likes   Reactions: member 587159
fishturtle1 said:
Let ##f## be an even function that is integrable on ##[0,a]##. By definition of even, for all ##x##, ##f(-x) = f(x)##. Let ##S \subset \mathbb{R}## and ##-S = \lbrace -s : s \in S \rbrace##. Then ##\sup\lbrace f(x) : x \in S \rbrace = \sup \lbrace f(x) : x \in -S \rbrace##.

Let ##P = \lbrace 0 = t_0 < t_1 < \dots < t_n = a\rbrace## be any partition of ##[0,a]##. Consider the partition ##-P = \lbrace 0 = -t_0 > -t_1 > \dots > -t_n = -a \rbrace##. Then,

$$U(f, P) = \sum_{k=0}^{n-1} M(f, [t_k, t_k+1]) \cdot (t_{k+1} - t_k)$$
$$ = \sum_{k=0}^{n-1} M(f, [-t_{k+1}, -t_k]) \cdot (-t_k - (-t_{k+1})) $$
$$ = U(x^2, -P)$$

Similarly, for any partition ##Q## of ##[-a, 0]##, we have ##U(f, Q) = U(f, -Q)##. It follows ##\inf\lbrace U(f, P) : \text{P is a partition of [0, a]}\rbrace = \inf\lbrace U(f, Q) : \text{Q is a partition of [-a, 0]} \rbrace##. So ##U(f)## on ##[0,a]## is the same as ##U(f)## on ##[-a, 0]##. By similar reasoning, ##L(f)## on ##[0,a]## is the same as ##L(f)## on ##[-a, 0]##. We can conclude
$$\int_{-a}^a f = \int_{-a}^0 f + \int_0^a f = 2\int_0^a f$$ []

------------

Back to the original problem, (using what we already had in OP), we have

$$\vert \int_{-2\pi}^{2\pi} x^2 \sin^8(e^x) dx \vert \le \int_{-2\pi}^{2\pi} x^2dx = 2 \int_0^{2\pi}x^2dx = 2\cdot \frac{8\pi^3}{3} = \frac{16\pi^3}{3}$$
which is what we wanted. []

Well done. I didn't check your entire proof in detail but the idea is correct.
 
  • Wow
  • Like
Likes   Reactions: ush_b9905 and fishturtle1
Math_QED said:
Well done. I didn't check your entire proof in detail but the idea is correct.
I appreciate your help.
 
  • Like
Likes   Reactions: member 587159
@fishturtle1, you showed way more work than is necessary. Since ##x^2\sin^8(e^x) \ge 0## for all real x, you can immediately discard the absolute value symbols. Here's a much shorter version, using the fact that ##\sin^8(e^x) \ge 0##:
##| \int_{-2\pi}^{2\pi} x^2 \sin^8(e^x)dx| = \int_{-2\pi}^{2\pi} x^2 \sin^8(e^x)dx \le \int_{-2\pi}^{2\pi} x^2 dx##
## = \left.\frac{x^3} 3 \right|_{-2\pi}^{2\pi} = \frac{8\pi^3} 3 - \frac{-8\pi^3} 3 = \frac{16\pi}3##
One more thing -- be sure to include dx in your integral.
 
Mark44 said:
@fishturtle1, you showed way more work than is necessary. Since ##x^2\sin^8(e^x) \ge 0## for all real x, you can immediately discard the absolute value symbols. Here's a much shorter version, using the fact that ##\sin^8(e^x) \ge 0##:
##| \int_{-2\pi}^{2\pi} x^2 \sin^8(e^x)dx| = \int_{-2\pi}^{2\pi} x^2 \sin^8(e^x)dx \le \int_{-2\pi}^{2\pi} x^2 dx##
## = \left.\frac{x^3} 3 \right|_{-2\pi}^{2\pi} = \frac{8\pi^3} 3 - \frac{-8\pi^3} 3 = \frac{16\pi}3##
One more thing -- be sure to include dx in your integral.

I guessed that at this point the fundamental theorem of calculus was not yet introduced.
 
Mark44 said:
@fishturtle1, you showed way more work than is necessary. Since ##x^2\sin^8(e^x) \ge 0## for all real x, you can immediately discard the absolute value symbols. Here's a much shorter version, using the fact that ##\sin^8(e^x) \ge 0##:
##| \int_{-2\pi}^{2\pi} x^2 \sin^8(e^x)dx| = \int_{-2\pi}^{2\pi} x^2 \sin^8(e^x)dx \le \int_{-2\pi}^{2\pi} x^2 dx##
## = \left.\frac{x^3} 3 \right|_{-2\pi}^{2\pi} = \frac{8\pi^3} 3 - \frac{-8\pi^3} 3 = \frac{16\pi}3##
One more thing -- be sure to include dx in your integral.
Thank you for the response. I agree with what you say, but yes, the fundamental theorem of calculus is in next chapter. The way I have ##\int_0^{2\pi} x^2 dx = \frac{8\pi^3}{3}## is by an example using definition of Riemann integral and specifying a partition.
 

Similar threads

  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 20 ·
Replies
20
Views
2K
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K