Showing that a certain summation is equal to a Dirac delta?

Click For Summary
The discussion focuses on proving that a specific summation involving bosonic creation and annihilation operators is equivalent to a Dirac delta function. The derivation begins with the expression involving the exponential terms and the commutation relation, leading to the need to show that the sum equals zero when the spatial points differ and integrates to one when they are the same. The periodicity of the exponential function is highlighted as crucial for demonstrating that terms cancel out when x does not equal y. The final conclusion affirms that the summation indeed results in the Dirac delta function, confirming the conceptual correctness of the derivation. The author seeks feedback on the rigor of their approach and its alignment with established principles in quantum field theory.
GCUEasilyDistracted
Messages
3
Reaction score
7
Homework Statement
Quantum Field Theory for the Gifted Amateur Exercise 3.1 (reworded a bit): Suppose we are working with a system defined in a volume of space ##V'##. For boson operators satisfying ##[\hat{a}_p, \hat{a}^{\dagger}_q] = \delta_{pq}## show that $$\frac{1}{V}\sum\limits_{pq}e^{i(p \cdot x - q \cdot y)}[\hat{a}_p, \hat{a}^{\dagger}_q] = \delta^{(3)}(x - y)$$, where ##V## is the magnitude of ##V'##. Show the same with fermion operators.
Relevant Equations
Seen above.
I'm studying Quantum Field Theory for the Gifted Amateur and feel like my math background for it is a bit shaky. This was my attempt at a derivation of the above. I know it's not rigorous, but is it at least conceptually right? I'll only show it for bosons since it's pretty much the same for fermions except the commutator is replaced with the anticommutator.

First note that
$$\frac{1}{V}\sum\limits_{pq}e^{i(p \cdot x - q \cdot y)}[\hat{a}_p, \hat{a}^{\dagger}_q]$$
$$= \frac{1}{V}\sum\limits_{pq}e^{i(p \cdot x - q \cdot y)}\delta_{pq}$$
$$= \frac{1}{V}\sum\limits_p e^{ip \cdot (x - y)}$$

To prove that the sum above is equivalent to ##\delta^{(3)}(x - y)##, we must show 2 things:

1. ##\frac{1}{V}\sum\limits_p e^{ip \cdot (x - y)} = 0## whenever ##x \neq y##
2. $$\int\limits_{V'} d^3x \frac{1}{V}\sum\limits_p e^{ip \cdot (x - y)} = 1$$

The first follows from the periodicity of ##e^{ip \cdot (x - y)}## [EDIT: the periodicity and the fact that for each value, the negative of that value will also appear within one period]. When ##x - y## is nonzero, each ##e^{ip \cdot (x - y)}## term will be cancelled out by some other term ##e^{ip' \cdot (x - y)}##.

For the second,
$$\int\limits_{V'} d^3x \frac{1}{V}\sum\limits_p e^{ip \cdot (x - y)}$$
$$= \frac{1}{V}\sum\limits_p \int\limits_{V'} d^3x e^{ip \cdot (x - y)}$$

Note that due to the same periodicity mentioned above, ##\int\limits_{V'} d^3x e^{ip \cdot (x - y)} = 0## when ##p \neq 0##. So

$$\frac{1}{V}\sum\limits_p \int\limits_{V'} d^3x e^{ip \cdot (x - y)}$$
$$= \frac{1}{V} \int\limits_{V'} d^3x e^{i(0) \cdot (x - y)}$$
$$= \frac{1}{V} \int\limits_{V'} d^3x$$
$$= \frac{1}{V}(V)$$
$$= 1$$

Therefore we have shown that

$$\frac{1}{V}\sum\limits_{pq}e^{i(p \cdot x - q \cdot y)}[\hat{a}_p, \hat{a}^{\dagger}_q] = \delta^{(3)}(x - y)$$

Does this make sense? Is there anything that should be corrected or made more rigorous? Thanks for your help!
 
Last edited:
  • Like
Likes sreerajt and vanhees71
Physics news on Phys.org
This is just the completeness of the functions ##\exp(\mathrm{i} \vec{p} \cdot \vec{x})## with ##\vec{p} \in \frac{2 \pi}{L} \mathbb{Z}^3## on the square-integrable functions on a cube with periodic boundary conditions. It's proven in many analysis textbooks dealing with Fourier Series.
 
I want to find the solution to the integral ##\theta = \int_0^{\theta}\frac{du}{\sqrt{(c-u^2 +2u^3)}}## I can see that ##\frac{d^2u}{d\theta^2} = A +Bu+Cu^2## is a Weierstrass elliptic function, which can be generated from ##\Large(\normalsize\frac{du}{d\theta}\Large)\normalsize^2 = c-u^2 +2u^3## (A = 0, B=-1, C=3) So does this make my integral an elliptic integral? I haven't been able to find a table of integrals anywhere which contains an integral of this form so I'm a bit stuck. TerryW

Similar threads

Replies
1
Views
1K
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
19
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 19 ·
Replies
19
Views
2K
Replies
1
Views
2K
Replies
7
Views
2K