I Showing That a Function Does Not Have Two Distinct Roots

  • I
  • Thread starter Thread starter Expiring
  • Start date Start date
  • Tags Tags
    Function Roots
Click For Summary
The discussion centers on proving that the function x^3 - 3x + m = 0 does not have two distinct roots in the interval 0 <= x <= 1 for any value of m. The proof utilizes Rolle's Theorem, demonstrating that if two distinct roots exist at points a and b, then there must be a point c in (a, b) where the derivative f'(c) equals zero. However, the calculated critical points c = -1 and 1 fall outside the interval (0, 1), leading to a contradiction. A clarification was made regarding the inclusion of the interval in the original problem, which was confirmed to be part of the proof. The proof is ultimately deemed valid after addressing this oversight.
Expiring
Messages
4
Reaction score
3
TL;DR
Showing that the function
x^3 - 3x + m = 0
does not have two distinct roots on the interval 0 <= x <= 1 for any value of m using Rolle's Theorem.
I am wondering if someone can look over my proof, and point out any mistakes I might have made.There is no value of m such that
x^3 - 3x + m = 0
has two distinct roots on the interval 0 <= x <= 1.

Proof.

Let f(x) = x^3 - 3x + m. Suppose, to the contrary, that there is a value of m such that f has two distinct roots in 0 <= x <= 1, and suppose that these roots occur within the interval at x=a and x=b. We apply Rolle's Theorem on the interval (a, b). The conditions of Rolle's Theorem are met since
1.) f is a polynomial, so it is continuous and differentiable everywhere, and, as a result, is continuous and differentiable on (a, b),
2.) f(a)=f(b)=0.
Then, according to Rolle's Theorem, there exists some point x=c in the interval 0<a<c<b<1 such that f'(c)=0. Computing f'(c) and finding c we see that c=-1, 1. Since both of these points lie outside the interval (0, 1), they lie outside the interval (a, b). We have reached a contradiction.
 
Last edited:
Physics news on Phys.org
Expiring said:
TL;DR Summary: Showing that the function
x^3 - 3x + m = 0
does not have two distinct roots for any value of m using Rolle's Theorem.

I am wondering if someone can look over my proof, and point out any mistakes I might have made.There is no value of m such that
x^3 - 3x + m = 0
has two distinct roots on the interval 0 <= x <= 1.
This interval doesn't appear in the original problem description shown in the summary. Is it actually a part of the problem that you neglected to show, or is this something that you added that isn't part of the given problem?
Expiring said:
Proof.

Let f(x) = x^3 - 3x + m. Suppose, to the contrary, that there is a value of m such that f has two distinct roots in 0 <= x <= 1, and suppose that these roots occur within the interval at x=a and x=b. We apply Rolle's Theorem on the interval (a, b). The conditions of Rolle's Theorem are met since
1.) f is a polynomial, so it is continuous and differentiable everywhere, and, as a result, is continuous and differentiable on (a, b),
2.) f(a)=f(b)=0.
Then, according to Rolle's Theorem, there exists some point x=c in the interval 0<a<c<b<1 such that f'(c)=0. Computing f'(c) and finding c we see that c=-1, 1. Since both of these points lie outside the interval (0, 1), they lie outside the interval (a, b). We have reached a contradiction.
 
Mark44 said:
This interval doesn't appear in the original problem description shown in the summary. Is it actually a part of the problem that you neglected to show, or is this something that you added that isn't part of the given problem?
It is part of the problem that I mistakenly left out. I fixed my original post.
 
With that change, your proof looks fine. You can assume, without loss of generality (wlog), that 0 < a < b < 1.