MHB Showing that a matrix is a homomorphism

  • Thread starter Thread starter flomayoc
  • Start date Start date
  • Tags Tags
    Matrix
Click For Summary
To demonstrate that a matrix is a homomorphism, one must show that for arbitrary elements x and y in a given set T, the equation f(xy) = f(x)f(y) holds true. The matrices involved can be expressed in a specific form, and the product xy needs to be calculated accordingly. For further validation, it's essential to prove that for any real number a, there exists a matrix A in T such that f(A) equals a, establishing the surjectivity of the function f. This approach allows for the application of the Fundamental Isomorphism Theorem to complete the proof. Understanding these steps is crucial for tackling the problem effectively.
flomayoc
Messages
1
Reaction score
0
Hi!
I am currently working on this question about matrices and showing they are homomorphisms. I have done part (i), but on part (ii) I am confused as the matrix is mapping to a - I have never seen this before and I'm not sure how to approach it. I know that usually you would work out the determinant and show that det(AB)=det(A)det(B), but I can't figure out how this would be different.

View attachment 7665

Thanks in advance!
 

Attachments

  • algebra.jpg
    algebra.jpg
    17.1 KB · Views: 141
Physics news on Phys.org
Welcome, flomayoc! (Wave)

To show that $f$ is a homomorphism, take arbitrary elements $x,y\in T$, and prove $f(xy) = f(x)f(y)$. If $x,y\in T$, then $x = \begin{pmatrix}a & b\\0 & a^{-1}\end{pmatrix}$ and $y = \begin{pmatrix}c & d\\0 & c^{-1}\end{pmatrix}$ for some $a,c\in \Bbb R^*$ and $b,d\in \Bbb R$. Now what is the matrix product $xy$?.
 
For part (iii), show for any $a \in \Bbb R^{\ast}$, that there exists $A \in T$ with $f(A) = a$. This shows $f$ is surjective, and then you can use the Fundamental Isomorphism Theorem.
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
Replies
2
Views
2K
  • · Replies 21 ·
Replies
21
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
Replies
4
Views
2K
Replies
13
Views
887
  • · Replies 13 ·
Replies
13
Views
1K