MHB Showing that a matrix is a homomorphism

  • Thread starter Thread starter flomayoc
  • Start date Start date
  • Tags Tags
    Matrix
flomayoc
Messages
1
Reaction score
0
Hi!
I am currently working on this question about matrices and showing they are homomorphisms. I have done part (i), but on part (ii) I am confused as the matrix is mapping to a - I have never seen this before and I'm not sure how to approach it. I know that usually you would work out the determinant and show that det(AB)=det(A)det(B), but I can't figure out how this would be different.

View attachment 7665

Thanks in advance!
 

Attachments

  • algebra.jpg
    algebra.jpg
    17.1 KB · Views: 127
Physics news on Phys.org
Welcome, flomayoc! (Wave)

To show that $f$ is a homomorphism, take arbitrary elements $x,y\in T$, and prove $f(xy) = f(x)f(y)$. If $x,y\in T$, then $x = \begin{pmatrix}a & b\\0 & a^{-1}\end{pmatrix}$ and $y = \begin{pmatrix}c & d\\0 & c^{-1}\end{pmatrix}$ for some $a,c\in \Bbb R^*$ and $b,d\in \Bbb R$. Now what is the matrix product $xy$?.
 
For part (iii), show for any $a \in \Bbb R^{\ast}$, that there exists $A \in T$ with $f(A) = a$. This shows $f$ is surjective, and then you can use the Fundamental Isomorphism Theorem.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
Back
Top