- #1
TheSodesa
- 224
- 7
Homework Statement
Let us look at a 3-dimensional potential box. Show, that the wave function in this situation can be written as the product of 3 single-argument functions.
Homework Equations
The 3D Schrödinger equation:
\begin{equation}
-\frac{\hbar^2}{2m} \left( \frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial y^2} + \frac{\partial^2 \Psi}{\partial z^2} \right) + V\Psi = E\Psi,
\end{equation}
where ##\Psi = \Psi(x,y,z)##
The Attempt at a Solution
I'm not at all sure how I'm supposed to show that this is true. I have not worked with partial differential equations at all, so I'm probably not in the right with what I tried to do:
I assumed, that ##\Psi(x,y,z) = \Psi_x(x) \Psi_y(y) \Psi_z(z)##, and tried plugging it into the Schrödinger equation as follows:
\begin{gather*}
-\frac{\hbar^2}{2m} &\left( \frac{\partial^2 \Psi(x,y,z)}{\partial x^2} + \frac{\partial^2 \Psi(x,y,z)}{\partial y^2} + \frac{\partial^2 \Psi(x,y,z)}{\partial z^2} \right) + V\Psi(x,y,z) = E\Psi(x,y,z)\\
\\
-\frac{\hbar^2}{2m} & \left( \frac{\partial^2 \Psi_x(x) \Psi_y(y) \Psi_z(z)}{\partial x^2} + \frac{\partial^2 \Psi_x(x) \Psi_y(y) \Psi_z(z)}{\partial y^2} + \frac{\partial^2 \Psi_x(x) \Psi_y(y) \Psi_z(z)}{\partial z^2} \right)
+ V\Psi_x(x) \Psi_y(y) \Psi_z(z) = E\Psi_x(x) \Psi_y(y) \Psi_z(z)\\
\\
-\frac{\hbar^2}{2m} & \left( \Psi_y(y) \Psi_z(z) \frac{\partial^2 \Psi_x(x)}{\partial x^2} + \Psi_x(x) \Psi_z(z) \frac{\partial^2 \Psi_y(y)}{\partial y^2} + \Psi_x(x) \Psi_y(y) \frac{\partial^2 \Psi_z(z)}{\partial z^2} \right)
+ V\Psi_x(x) \Psi_y(y) \Psi_z(z) = E\Psi_x(x) \Psi_y(y) \Psi_z(z)
\end{gather*}
Dividing by ## \Psi_x(x) \Psi_y(y) \Psi_z(z)##:
\begin{gather*}
-\frac{\hbar^2}{2m} & \left( \frac{1}{\Psi_x(x)} \frac{\partial^2 \Psi_x(x)}{\partial x^2} + \frac{1}{\Psi_y(y)} \frac{\partial^2 \Psi_y(y)}{\partial y^2} + \frac{1}{\Psi_z(z)} \frac{\partial^2 \Psi_z(z)}{\partial z^2} \right)
+ V = E
\end{gather*}
But... Now what? Is there a way to proceed from here, or did I not pursue the correct path?
Last edited: