Mr Davis 97 said:
Oh okay. So is the fact that ##H,K## must subgroups baked into the definition of semi-direct product? I guess the wording of the problem confused me.
So here is my argument:
Suppose that we know the lattice of subgroups of ##Q_8## (say, from a previous exercise): $$\{1\}, \langle -1 \rangle, \langle i \rangle, \langle j \rangle, \langle k \rangle, Q_8.$$ It's clear that ##-1## is an element of all nontrivial subgroups (since ##i^2=j^2=k^2=-1## and clearly ##-1\in \langle -1 \rangle##), and so there can never be a trivial intersection of subgroups, and hence we can not form a semi-direct product.
Your argumentation is in principle:
All proper subgroups are either ##\mathbb{Z}_2## or ##\mathbb{Z}_4##. Now the set ##\mathbb{Z}_4 \times \mathbb{Z}_4## has too many elements. So only the set ##\mathbb{Z}_2 \times \mathbb{Z}_4## is possible. Yes, ##\langle -1 \rangle=\mathbb{Z}_2 \subseteq \mathbb{Z}_4 =\langle i \rangle##, but we have the product only up to isomorphism. So the left part ##\mathbb{Z}_2## in ##\mathbb{Z}_2 \times \mathbb{Z}_4## doesn't need to be identical to the subgroup of the ##\mathbb{Z}_4## part, only isomorphic, which isn't sufficient. W.l.o.g. we have the pairs
$$P:=\{\,(1,1)\; , \;(1,i)\; , \;(1,-1)\; , \;(1,-i)\; , \;(-1,1)\; , \;(-1,i)\; , \;(-1,-1)\; , \;(-1,i)\,\}$$
and we must show, that these are not isomorphic to ##Q_8## regardless how the multiplication is chosen. You see, I still have ##(\mathbb{Z}_2,1) \cap (1,\mathbb{Z}_4) = (1,1) = \{\,1\,\}## although a copy of ##\mathbb{Z}_2## is a subgroup of ##\mathbb{Z}_4##. The point is the copy!
Now ##\mathbb{Z}_2 \triangleleft Q_8## as central subgroup. So we have to assume that ##Q_8 \cong \mathbb{Z}_2 \rtimes_\rho \mathbb{Z}_4## for some homomorphism ##\rho\, : \,\mathbb{Z}_4 \longrightarrow \operatorname{Aut}(\mathbb{Z}_2)## and a group multiplication
$$(\varepsilon\; , \;i^n)\cdot (\varepsilon'\; , \;i^m) = (\varepsilon \cdot \rho(i^n)(\varepsilon')\; , \;i^{n+m})$$
on the
set ##P = \mathbb{Z}_2 \times \mathbb{Z}_4##, and must show that for neither choice of ##\rho## this can be isomorphic to ##Q_8##.
The setup has all ingredients which are needed: ##(\mathbb{Z}_2,1)\; , \;(1,\mathbb{Z}_4) \leq Q_8\; , \;(\mathbb{Z}_2,1) \trianglelefteq Q_8 \; , \;(\mathbb{Z}_2,1) \cap (1,\mathbb{Z}_4)=1##. Now why can't we choose ##\rho \, : \, \mathbb{Z}_4 \longrightarrow \operatorname{Aut}(\mathbb{Z}_2)## in such a way, that ##Q_8 \cong (\mathbb{Z}_2,1)\; \rtimes_\rho \;(1,\mathbb{Z}_4)## with the multiplication as defined above?