Showing when quadratic integer rings are isomorphic

Click For Summary
The discussion focuses on proving the isomorphism between quadratic integer rings R = Z[√a] and S = Z[√b] under specific conditions. It establishes that the abelian groups (R, +) and (S, +) are isomorphic regardless of the values of a and b, provided they are squarefree integers. For the ring isomorphism R ≅ S, it is shown that this holds if and only if a equals b. The proof involves analyzing the properties of homomorphisms and the implications of the squarefree condition on the integers involved. The conclusion confirms that the isomorphism is valid only when a and b are identical.
Mr Davis 97
Messages
1,461
Reaction score
44

Homework Statement


Let ##a,b## be squarefree integers and set ##R = \mathbb{Z}[\sqrt{a}]## and ##S = \mathbb{Z}[\sqrt{b}]##. Prove that

a) There is an isomorphism of abelian groups ##(R,+) \cong (S,+)##.

b) There is an isomorphism of rings ##R\cong S## if and only if ##a=b##.

Homework Equations

The Attempt at a Solution


a) Proof: Let ##\varphi : R \to \mathbb{Z} \times \mathbb{Z}## be a map of groups such that ##\varphi(x+y\sqrt{a}) = (x,y)##. This is a homomorphism since if ##x+y\sqrt{a}, w+z\sqrt{a} \in R##, then $$\varphi ((x+y\sqrt{a}) + (w+z\sqrt{a})) = \varphi((x+w) + (y+z)\sqrt{a}) = (x+w,y+z) = (x,y)+(w,z) = \varphi(x+y\sqrt{a}) + \varphi(w+z\sqrt{a}).$$

Now, let ##x+y\sqrt{a}\in \ker(\varphi)##. Then ##\varphi(x+y\sqrt{a}) = (x,y) = 0##, which is true if and only if ##x=0## and ##y=0##, i.e. ##x+y\sqrt{a} = 0##, and so the kernel is trivial, and the map is injective.

The map is certainly surjective since ##\varphi(x+y\sqrt{a}) = (x,y)##, and ##(x,y)## is a general element of ##\mathbb{Z} \times \mathbb{Z}##. Hence ##R \cong \mathbb{Z} \times \mathbb{Z}##.

Note that this proof did not depend on the value of ##a##, only that it was squarefree. Hence we also have that ##S \cong \mathbb{Z} \times \mathbb{Z}##, and so ##R \cong S## as groups under addition.

b) I think that the proof for a) is correct, but I am not sure where to start here. Clear if ##a=b##, then ##R\cong S##, so it is the other direction that I am confused by. How should I get started with this direction?
 
Physics news on Phys.org
Mr Davis 97 said:
b) I think that the proof for a) is correct, but I am not sure where to start here. Clear if ##a=b##, then ##R\cong S##, so it is the other direction that I am confused by. How should I get started with this direction?
Always start with what you have. No assumptions, not jumping to conclusions, just a gathering of facts.

So let's assume we have an isomorphism ##\varphi\, : \,R=\mathbb{Z}[\sqrt{a}] \longrightarrow \mathbb{Z}[\sqrt{b}] =S##.
I would start to find out, what ##\varphi(\sqrt{a})## can possibly be. Once we know that, we can consider ##\varphi((x+y\sqrt{a})\cdot (u+v\sqrt{b}))##.

We already know that ##\varphi(0)=0## and ##\varphi(1)=1## because both rings are integral domains. We also know, that ##(\sqrt{a})^2-a=0##.

I would start with this.
 
fresh_42 said:
Always start with what you have. No assumptions, not jumping to conclusions, just a gathering of facts.

So let's assume we have an isomorphism ##\varphi\, : \,R=\mathbb{Z}[\sqrt{a}] \longrightarrow \mathbb{Z}[\sqrt{b}] =S##.
I would start to find out, what ##\varphi(\sqrt{a})## can possibly be. Once we know that, we can consider ##\varphi((x+y\sqrt{a})\cdot (u+v\sqrt{b}))##.

We already know that ##\varphi(0)=0## and ##\varphi(1)=1## because both rings are integral domains. We also know, that ##(\sqrt{a})^2-a=0##.

I would start with this.
Here is some of my reasoning.

If ##\varphi (1) = 1##, then ##\varphi (a) = a##, since ##\varphi## is a homomorphism, and ##a## is just an integer.

Now, suppose that ##\varphi (\sqrt{a}) = r + s\sqrt{b}## for some ##r,s\in \mathbb{Z}##. Then, squaring both sides, we get ##\varphi (\sqrt{a})^2 = r^2 + 2rs\sqrt{b} + bs^2##. Now we can use the homomorphism property to put the square inside, so that ##\varphi (a) = r^2 + 2rs\sqrt{b} + bs^2##, and so ##a= r^2 + 2rs\sqrt{b} + bs^2##. We have to somehow eliminate the ##\sqrt{b}## term on the RHS, since the LHS is just an integer, and we can do this in two ways: either ##s=0## or ##r=0##. In the first case we get that ## a = r^2##, and in the second case we get ##a=bs^2##, but I'm not exactly sure what to do with either of these equations, or whether I am on the right track or not...
 
Mr Davis 97 said:
If ##\varphi (1) = 1##, then ##\varphi (a) = a##, since ##\varphi## is a homomorphism, and ##a## is just an integer.
O.k., let me see.

##\varphi(a)=\varphi(1\cdot a)=\varphi(1)\cdot \varphi(a) \Longrightarrow 0=\varphi(a)\cdot (1-\varphi(1)) \stackrel{(*)}{\Longrightarrow} 1=\varphi(1)##
##(*)## since ##0 \neq S## is an integral domain and thus ##\varphi(a)=\underbrace{\varphi(1)+\ldots +\varphi(1)}_{a\text{ times }}=\underbrace{1+\ldots +1}_{a\text{ times }}=a\,.##

Mr Davis 97 said:
Now, suppose that ##\varphi (\sqrt{a}) = r + s\sqrt{b}## for some ##r,s\in \mathbb{Z}##. Then, squaring both sides, we get ##\varphi (\sqrt{a})^2 = r^2 + 2rs\sqrt{b} + bs^2.## Now we can use the homomorphism property to put the square inside, so that ##\varphi (a) = r^2 + 2rs\sqrt{b} + bs^2,## and so ##a= r^2 + 2rs\sqrt{b} + bs^2.## We have to somehow eliminate the ##\sqrt{b}## term on the RHS, since the LHS is just an integer, and we can do this in two ways: either ##s=0## or ##r=0.## In the first case we get that ##a = r^2,## and in the second case we get ##a=bs^2,## but I'm not exactly sure what to do with either of these equations, or whether I am on the right track or not...
From ##s=0## we get ##\varphi(\sqrt{a})=r## and so ##\varphi^{-1}(r)=r=\sqrt{a}## by the same argument as in the beginning, this time for ##\varphi^{-1}##, but ##\sqrt{a}\notin \mathbb{Z}##.
From ##r=0## we get - as you said - ##a=bs^2##. However, ##a## is squarefree, so ##s=\pm 1##.
 
fresh_42 said:
O.k., let me see.

##\varphi(a)=\varphi(1\cdot a)=\varphi(1)\cdot \varphi(a) \Longrightarrow 0=\varphi(a)\cdot (1-\varphi(1)) \stackrel{(*)}{\Longrightarrow} 1=\varphi(1)##
##(*)## since ##0 \neq S## is an integral domain and thus ##\varphi(a)=\underbrace{\varphi(1)+\ldots +\varphi(1)}_{a\text{ times }}=\underbrace{1+\ldots +1}_{a\text{ times }}=a\,.##From ##s=0## we get ##\varphi(\sqrt{a})=r## and so ##\varphi^{-1}(r)=r=\sqrt{a}## by the same argument as in the beginning, this time for ##\varphi^{-1}##, but ##\sqrt{a}\notin \mathbb{Z}##.
From ##r=0## we get - as you said - ##a=bs^2##. However, ##a## is squarefree, so ##s=\pm 1##.
So am I done, since what I wanted to show was that ##a=b##? (And given that is there a way to eliminate the ##s=-1## case?)
 
Mr Davis 97 said:
So am I done, since what I wanted to show was that ##a=b##? (And given that is there a way to eliminate the ##s=-1## case?)
That's easy to check, isn't it. Is ##\varphi(x+y\sqrt{a})=x-y\sqrt{b}## a ring isomorphism or not? My guess is, it is, so they are two possibilities, but I haven't done the math. But ##\mathbb{Z}[\sqrt{a}]=\mathbb{Z}[-\sqrt{a}]## is strong evidence.
 
  • Like
Likes Mr Davis 97
fresh_42 said:
That's easy to check, isn't it. Is ##\varphi(x+y\sqrt{a})=x-y\sqrt{b}## a ring isomorphism or not? My guess is, it is, so they are two possibilities, but I haven't done the math. But ##\mathbb{Z}[\sqrt{a}]=\mathbb{Z}[-\sqrt{a}]## is strong evidence.
So would the following be a complete solution to part b)?

The reverse direction is easy, since if ##a=b## then by the reflexive property of isomorphisms, ##\mathbb{Z}[\sqrt{a}] \cong \mathbb{Z}[\sqrt{b}]##, so we will focus on the other direction. Suppose that ##\mathbb{Z}[\sqrt{a}] \cong \mathbb{Z}[\sqrt{b}]##. We want to show that ##a=b##. Let ##\phi : R \to S## be an isomorphism. Since both ##R## and ##S## are integral domains, we know that ##\phi (1) = 1##. Hence we then know that ##\phi(a)=\underbrace{\phi(1)+\ldots +\phi(1)}_{a\text{ times }}=\underbrace{1+\ldots +1}_{a\text{ times }}=a\,##. Now, suppose that ##\varphi (\sqrt{a}) = r + s\sqrt{b}## for some ##r,s\in \mathbb{Z}##. Then, squaring both sides, we get ##\varphi (\sqrt{a})^2 = r^2 + 2rs\sqrt{b} + bs^2##. Now we can use the homomorphism property to put the square inside, so that ##\varphi (a) = r^2 + 2rs\sqrt{b} + bs^2##, and so ##a= r^2 + 2rs\sqrt{b} + bs^2##. We have to somehow eliminate the ##\sqrt{b}## term on the RHS, since the LHS is just an integer, and we can do this in two ways: either ##s=0## or ##r=0##. In the first case we get that ##a = r^2##, and in the second case we get ##a=bs^2##. If ##a=r^2##, then ##\phi (\sqrt{a}) = r##, and so ##\phi^{-1}(r) = \sqrt{a}##. But this is a contradiction since ##\phi^{-1}## is a homomorphism and so must map to another integer. So we must have that ##a=bs^2##. But it was given that ##a## is squarefree, so it must be the case that ##s =\pm 1##. Either way, we have that ##a=b##.
 
Mr Davis 97 said:
So would the following be a complete solution to part b)?

The reverse direction is easy, since if ##a=b## then by the reflexive property of isomorphisms, ##\mathbb{Z}[\sqrt{a}] \cong \mathbb{Z}[\sqrt{b}]##, so we will focus on the other direction. Suppose that ##\mathbb{Z}[\sqrt{a}] \cong \mathbb{Z}[\sqrt{b}]##. We want to show that ##a=b##. Let ##\phi : R \to S## be an isomorphism. Since both ##R## and ##S## are integral domains, we know that ##\phi (1) = 1##. Hence we then know that ##\phi(a)=\underbrace{\phi(1)+\ldots +\phi(1)}_{a\text{ times }}=\underbrace{1+\ldots +1}_{a\text{ times }}=a\,##. Now, suppose that ##\varphi (\sqrt{a}) = r + s\sqrt{b}## for some ##r,s\in \mathbb{Z}##. Then, squaring both sides, we get ##\varphi (\sqrt{a})^2 = r^2 + 2rs\sqrt{b} + bs^2##. Now we can use the homomorphism property to put the square inside, so that ##\varphi (a) = r^2 + 2rs\sqrt{b} + bs^2##, and so ##a= r^2 + 2rs\sqrt{b} + bs^2##.
The last three occurrences of ##\varphi## should probably be ##\phi##.
We have to somehow eliminate the ##\sqrt{b}## term on the RHS, since the LHS is just an integer, and we can do this in two ways: either ##s=0## or ##r=0##. In the first case we get that ##a = r^2##, and in the second case we get ##a=bs^2##. If ##a=r^2##, then ##\phi (\sqrt{a}) = r##, and so ##\phi^{-1}(r) = \sqrt{a}.##
I wouldn't use this, as it looks like taking the square root, and I don't see at once that this is without trouble, resp. further argumentation. You can either use that ##a## is squarefree so it can't be equal to ##r^2##, or directly that by ##s=0## we have ##\phi(\sqrt{a})=r## and thus ##\phi^{-1}(r)=r=\sqrt{a}## by the previous argument, that all integers are fix points of ##\phi## and accordingly of ##\phi^{-1}## which also leads to the squarefree-ness of ##a## in a way.

I don't immediately get your argument: ##\phi(\sqrt{a})^2=r^2 \Longrightarrow \phi(\sqrt{a})=r## why this has to be true. Theoretically there can be plenty of elements which squared resulted in ##a## or ##\phi(a)##. And even if it was only ##r##, there is still the ##-r## case to be mentioned. Saying ##a=r^2 \in \mathbb{Z}## can't be, since ##a## is squarefree is much easier.
But this is a contradiction since ##\phi^{-1}## is a homomorphism and so must map to another integer. So we must have that ##a=bs^2##. But it was given that ##a## is squarefree, so it must be the case that ##s =\pm 1##. Either way, we have that ##a=b##.
So the only thing I didn't understand was "If ##a=r^2## then ##\phi(\sqrt{a})=r.##"
If you had written "If ##s=0## then ##\phi(\sqrt{a})=r##" everything would have been perfect. Except the "##\varphi##" typo of course.
 
  • Like
Likes Mr Davis 97

Similar threads

Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
Replies
1
Views
1K
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
900
Replies
6
Views
1K